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Abstract

Multinomial logit models are used to model relationships between a polytomous response variable and
a set of regressor variables. The term “multinomial logit model” includes, in a broad sense, a variety
of models. The cumulative logit model is used when the response of an individual unit is restricted
to one of a finite number of ordinal values. Generalized logit and conditional logit models are used to
model consumer choices. This article focuses on the statistical techniques for analyzing discrete choice
data and discusses fitting these models using SAS/STAT software.*

Introduction

Multinomial logit models are used to model relationships between a polytomous response variable and
a set of regressor variables. These polytomous response models can be classified into two distinct types,
depending on whether the response variable has an ordered or unordered structure.

In an ordered model, the response Y of an individual unit is restricted to one of m ordered values. For
example, the severity of a medical condition may be: none, mild, and severe. The cumulative logit
model assumes that the ordinal nature of the observed response is due to methodological limitations
in collecting the data that results in lumping together values of an otherwise continuous response
variable (McKelvey and Zavoina 1975). Suppose Y takes values y1,¥s,...,yn on some scale, where
Y1 < y2 < ...<Ynm. Itis assumed that the observable variable is a categorized version of a continuous
latent variable U such that
Y=y sa_1<U<La,i=1,....m

where —co = ag < a1 < ... < ayy, = 00. It is further assumed that the latent variable U is determined

by the explanatory variable vector x in the linear form U = —3'x + ¢, where 3 is a vector of regression
coefficients and € is a random variable with a distribution function F'. It follows that

Pr{Y <y,|x} = F(a; + 3'x)

If F is the logistic distribution function, the cumulative model is also known as the proportional odds
model. You can use PROC LOGISTIC or PROC PROBIT directly to fit the cumulative logit models.
Although the cumulative model is the most widely used model for ordinal response data, other useful
models include the adjacent-categories logit model and the continuation-ratio model (Agresti 1990).

*This chapter was presented at SUGI 20 by Ying So and can also be found in the SUGI 20 proceedings. Copies
of this article (MR-2010G), the other chapters, sample code, and all of the macros are available on the Web
http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html.
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In an unordered model, the polytomous response variable does not have an ordered structure. Two
classes of models, the generalized logit models and the conditional logit models, can be used with
nominal response data. The generalized logit model consists of a combination of several binary logits
estimated simultaneously. For example, the response variable of interest is the occurrence or nonoc-
currence of infection after a Caesarean section with two types of (I,II) infection. Two binary logits
are considered: one for type I infection versus no infection and the other for type II infection versus
no infection. The conditional logit model has been used in biomedical research to estimate relative
risks in matched case-control studies. The nuisance parameters that correspond to the matched sets
in an unconditional analysis are eliminated by using a conditional likelihood that contains only the
relative risk parameters (Breslow and Day 1980). The conditional logit model was also introduced by
McFadden (1974) in the context of econometrics.

In studying consumer behavior, an individual is presented with a set of alternatives and asked to choose
the most preferred alternative. Both the generalized logit and conditional logit models are used in the
analysis of discrete choice data. In a conditional logit model, a choice among alternatives is treated as
a function of the characteristics of the alternatives, whereas in a generalized logit model, the choice is a
function of the characteristics of the individual making the choice. In many situations, a mixed model
that includes both the characteristics of the alternatives and the individual is needed for investigating
consumer choice.

Consider an example of travel demand. People are asked to choose between travel by auto, plane or
public transit (bus or train). The following SAS statements create the data set TRAVEL. The variables
AutoTime, PlanTime, and TranTime represent the total travel time required to get to a destination by
using auto, plane, or transit, respectively. The variable Age represents the age of the individual being
surveyed, and the variable Chosen contains the individual’s choice of travel mode.

data travel;
input AutoTime PlanTime TranTime Age Chosen $;

datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto

10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto

22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane

11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto

12.0 3.0 11.0 33 Plane

18.0 5.5 20.0 30 Plane

23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto
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In this example, AutoTime, PlanTime, and TranTime are alternative-specific variables, whereas Age
is a characteristic of the individual. You use a generalized logit model to investigate the relationship
between the choice of transportation and Age, and you use a conditional logit model to investigate how
travel time affects the choice. To study how the choice depends on both the travel time and age of the
individual, you need to use a mixed model that incorporates both types of variables.

A survey of the literature reveals a confusion in the terminology for the nominal response models. The
term “multinomial logit model” is often used to describe the generalized logit model. The mixed logit is
sometimes referred to as the multinomial logit model in which the generalized logit and the conditional
logit models are special cases.

The following sections describe discrete choice models, illustrate how to use SAS/STAT software to fit
these models, and discuss cross-alternative effects.

Modeling Discrete Choice Data

Consider an individual choosing among m alternatives in a choice set. Let IL;; denote the probability
that individual j chooses alternative k, let X; represent the characteristics of individual j, and let Zj;
be the characteristics of the kth alternative for individual j. For example, X; may be an age and each
Zjj, a travel time.

The generalized logit model focuses on the individual as the unit of analysis and uses individual char-
acteristics as explanatory variables. The explanatory variables, being characteristics of an individual,
are constant over the alternatives. For example, for each of the m travel modes, X; = (1 age)’, and
for the first subject, X; = (1 32)". The probability that individual j chooses alternative k is

I, — exp(B,X;) _ 1
TN exp(B1X;) XL exp[(B — Br)' X))

By,--.,8,, are m vectors of unknown regression parameters (each of which is different, even though
X is constant across alternatives). Since > ;" Il = 1, the m sets of parameters are not unique. By
setting the last set of coefficients to null (that is, 3,, = 0), the coefficients 3}, represent the effects of
the X variables on the probability of choosing the kth alternative over the last alternative. In fitting
such a model, you estimate m — 1 sets of regression coefficients.

In the conditional logit model, the explanatory variables Z assume different values for each alternative
and the impact of a unit of Z is assumed to be constant across alternatives. For example, for each of the
m travel modes, Zj;, = (time)’, and for the first subject, Z1; = (10)’, Z12 = (4.5)', and Z;3 = (10.5)".
The probability that the individual j chooses alternative k is

N exp(0'Z i) 1
TNk exp(0'Zy) YL expl0(Zji — Zjy)]

0 is a single vector of regression coefficients. The impact of a variable on the choice probabilities derives
from the difference of its values across the alternatives.
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For the mixed logit model that includes both characteristics of the individual and the alternatives, the
choice probabilities are
exp(B;ch + B/ij)

I, =
S exp(BX; + 0'Zy)

Bi,...,08,,-1 and 3, = 0 are the alternative-specific coefficients, and 0 is the set of global coefficients.

Fitting Discrete Choice Models

The CATMOD procedure in SAS/STAT software directly fits the generalized logit model. SAS/STAT
software does not yet have a procedure that is specially designed to fit the conditional or mixed logit
models. However, with some preliminary data processing, you can use the PHREG procedure to fit
these models.

The PHREG procedure fits the Cox proportional hazards model to survival data (see the SAS/STAT
documentation). The partial likelihood of Breslow has the same form as the likelihood in a conditional
logit model.

Let z; denote the vector of explanatory variables for individual [. Let t; < to < ... < t; denote k
distinct ordered event times. Let d; denote the number of failures at ¢;. Let s; be the sum of the
vectors z; for those individuals that fail at ¢;, and let R; denote the set of indices for those who are at
risk just before ;.

The Breslow (partial) likelihood is

k
exp(0's;)
1;[ ier, exp(0'z)] %

In a stratified analysis, the partial likelihood is the product of the partial likelihood for each individual
stratum. For example, in a study of the time to first infection from a surgery, the variables of a
patient consist of Time (time from surgery to the first infection), Status (an indicator of whether
the observation time is censored, with value 2 identifying a censored time), Z1 and Z2 (explanatory
variables thought to be related to the time to infection), and Grp (a variable identifying the stratum to
which the observation belongs). The specification in PROC PHREG for fitting the Cox model using
the Breslow likelihood is as follows:

proc phreg;
model timexstatus(2) = zl1 z2 / ties=breslow;
strata grp;
run;

To cast the likelihood of the conditional logit model in the form of the Breslow likelihood, consider m
artificial observed times for each individual who chooses one of m alternatives. The kth alternative is
chosen at time 1; the choices of all other alternatives (second choice, third choice, ...) are not observed
and would have been chosen at some later time. So a choice variable is coded with an observed time
value of 1 for the chosen alternative and a larger value, 2, for all unchosen (unobserved or censored
alternatives). For each individual, there is exactly one event time (1) and m — 1 nonevent times,
and the risk set just prior to this event time consists of all the m alternatives. For individual j with
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alternative-specific characteristics Zj;, the Breslow likelihood is then

exp(O’ij)
Lp(0) =
50) = S e (0Z,)

This is precisely the probability that individual j chooses alternative k in a conditional logit model. By
stratifying on individuals, you get the likelihood of the conditional logit model. Note that the observed
time values of 1 and 2 are chosen for convenience; however, the censored times have to be larger than
the event time to form the correct risk set.

Before you invoke PROC PHREG to fit the conditional logit, you must arrange your data in such a
way that there is a survival time for each individual-alternative. In the example of travel demand, let
Subject identify the individuals, let TravTime represent the travel time for each mode of transportation,
and let Choice have a value 1 if the alternative is chosen and 2 otherwise. The Choice variable is used
as the artificial time variable as well as a censoring variable in PROC PHREG. The following SAS
statements reshape the data set TRAVEL into data set CHOICE and display the first nine observations:

data choice(keep=subject mode travtime choice);
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
doi=1 to 3;
Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
output;
end;
run;

proc print data=choice(obs=9);
run;

Trav
Obs Subject Mode Time Choice
1 1 Auto 10.0 2
2 1 Plane 4.5 1
3 1 Transit 10.5 2
4 2 Auto 5.5 1
5 2 Plane 4.0 2
6 2 Transit 7.5 2
7 3 Auto 4.5 2
8 3 Plane 6.0 2
9 3 Transit 5.5 1

Notice that each observation in TRAVEL corresponds to a block of three observations in CHOICE,
exactly one of which is chosen.
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The following SAS statements invoke PROC PHREG to fit the conditional logit model. The Breslow
likelihood is requested by specifying ties=breslow. Choice is the artificial time variable, and a value
of 2 identifies censored times. Subject is used as a stratification variable.

proc phreg data=choice;
model choicex*choice(2) = travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model Using PHREG’;

run;
Conditional Logit Model Using PHREG
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
TravTime 1 -0.26549 0.10215 6.7551 0.0093 0.767

To study the relationship between the choice of transportation and the age of people making the
choice, the analysis is based on the generalized logit model. You can use PROC CATMOD directly
to fit the generalized logit model (see the SAS/STAT User’s Guide). In the following invocation of
PROC CATMOD, Chosen is the response variable and Age is the explanatory variable:

proc catmod data=travel;
direct age;
model chosen=age;
title ’Multinomial Logit Model Using Catmod’;
run;
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Response Profiles

Response Chosen
1 Auto
Plane

3 Transit

Analysis of Maximum Likelihood Estimates

Function Standard Chi-
Parameter Number Estimate Error Square Pr > ChiSq
Intercept 1 3.0449 2.4268 1.57 0.2096
2 2.7212 2.2929 1.41 0.2353
Age 1 -0.0710 0.0652 1.19 0.2762
2 -0.0500 0.0596 0.70 0.4013

Note that there are two intercept coefficients and two slope coefficients for Age. The first Intercept
and the first Age coefficients correspond to the effect on the probability of choosing auto over transit,
and the second intercept and second age coefficients correspond to the effect of choosing plane over
transit.

Let X; be a (p+ 1)-vector representing the characteristics of individual j. The generalized logit model
can be cast in the framework of a conditional model by defining the global parameter vector 8 and the
alternative-specific regressor variables Z;;, as follows:

0
B Xj ) 0
By 0 }(()3 : 0
0 = : Zj = | . Zj = Zjm—1 = 0 Zjm = | :
IBm—l 0 X]

0

where the 0 is a (p+ 1)-vector of zeros. The probability that individual j chooses alternative k for the
generalized logit model is put in the form that corresponds to a conditional logit model as follows:

exp(8;,X;)
Zznle exp(,@EX]’)

exp(0'Z i)
Soi%y exp(0'Zy;)

My, =

Here, the vector X; representing the characteristics of individual j includes the element 1 for the
intercept parameter (provided that the intercept parameters are to be included in the model).
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By casting the generalized logit model into a conditional logit model, you can then use PROC PHREG
to analyze the generalized logit model. In the example of travel demand, the alternative-specific
variables Auto, Plane, AgeAuto, and AgePlane are created from the individual characteristic variable
Age. The following SAS statements reshape the data set TRAVEL into data set CHOICE2 and display
the first nine observations:

data choice?2;
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
doi=1 to 3;
Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode) ;
Auto = (i eq 1);
Plane = (i eq 2);
AgeAuto = auto * age;
AgePlane = plane * age;
output;
end;
keep subject mode travtime choice auto plane ageauto ageplane;
run;

proc print data=choice2(obs=9);

run;
Trav Age Age

Obs Subject Mode Time Choice Auto Plane Auto Plane
1 1 Auto 10.0 2 1 0 32 0
2 1 Plane 4.5 1 0 1 0 32
3 1 Transit 10.5 2 0 0 0 0
4 2 Auto 5.5 1 1 0 13 0
5 2 Plane 4.0 2 0 1 0 13
6 2 Transit 7.5 2 0 0 0 0
7 3 Auto 4.5 2 1 0 41 0
8 3 Plane 6.0 2 0 1 0 41
9 3 Transit 5.5 1 0 0 0 0

The following SAS statements invoke PROC PHREG to fit the generalized logit model:

proc phreg data=choice2;
model choicexchoice(2) = auto plane ageauto ageplane /
ties=breslow;
strata subject;
title ’Generalized Logit Model Using PHREG’;
run;
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Generalized Logit Model Using PHREG
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Auto 1 3.04494 2.42682 1.5743 0.2096 21.009
Plane 1 2.72121 2.29289 1.4085 0.2353 15.199
AgeAuto 1 -0.07097 0.06517 1.1859 0.2762 0.931
AgePlane 1 -0.05000 0.05958 0.7045 0.4013 0.951

By transforming individual characteristics into alternative-specific variables, the mixed logit model can
be analyzed as a conditional logit model.

Analyzing the travel demand data for the effects of both travel time and age of individual requires the
same data set as the generalized logit model, only now the TravTime variable will be used as well. The
following SAS statements use PROC PHREG to fit the mixed logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane travtime /
ties=breslow;
strata subject;
title ’Mixed Logit Model Using PHREG’;

run;
Mixed Logit Model Using PHREG
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Auto 1 2.50069 2.39585 1.0894 0.2966 12.191
Plane 1 -2.77912 3.52929 0.6201 0.4310 0.062
AgeAuto 1 -0.07826 0.06332 1.56274 0.2165 0.925
AgePlane 1 0.01695 0.07439 0.0519 0.8198 1.017
TravTime 1 -0.60845 0.27126 5.0315 0.0249 0.544




674 MR-2010G — Multinomial Logit Models

A special case of the mixed logit model is the conditional logit model with alternative-specific constants.
Each alternative in the model can be represented by its own intercept, which captures the unmeasured
desirability of the alternative.

proc phreg data=choice?2;
model choicex*choice(2) = auto plane travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model with Alternative Specific Constants’;

run;
Conditional Logit Model with Alternative Specific Constants
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Auto 1 -0.11966 0.70820 0.0285 0.8658 0.887
Plane 1 -1.63145 1.24251 1.7241 0.1892 0.196
TravTime 1 -0.48665 0.20725 5.5139 0.0189 0.615

With transit as the reference mode, the intercept for auto, which is negative, may reflect the inconve-
nience of having to drive over traveling by bus/train, and the intercept for plane may reflect the high
expense of traveling by plane over bus/train.

Cross-Alternative Effects

Discrete choice models are often derived from the principle of maximum random utility. It is assumed
that an unobserved utility Vj is associated with the kth alternative, and the response function Y is
determined by

Y=ke Vy=max{V,1 <1l <m}

Both the generalized logit and the conditional logit models are based on the assumption that Vi,..., Vy,
are independently distributed and each follows an extreme maxima value distribution (Hoffman and
Duncan 1988). An important property of such models is Independence from Irrelevant Alternatives
(ITA); that is, the ratio of the choice probabilities for any two alternatives for a particular observation
is not influenced systematically by any other alternatives. ITA can be tested by fitting a model that
contains all the cross-alternative effects and examining the significance of these effects. The cross-
alternative effects pick up a variety of ITA violations and other sources of error in the model. (See
pages 452, 459, 468, and 679 for other discussions of ITA.)

In the example of travel demand, there may be separate effects for the three travel modes and travel
times. In addition, there may be cross-alternative effects for travel times. Not all the effects are
estimable, only two of the three intercepts and three of the six cross-alternative effects can be estimated.
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The following SAS statements create the design variables for all the cross-alternative effects and display
the first nine observations:

* Number of alte
%let m = 3;

data choice3;

rnatives in each choice set;

drop i j k autotime plantime trantime;

* Values of t
array allmode

he variable CHOSEN;
s[&m] $

_temporary_ (’Auto’ ’Plane’ ’Transit’);

* Travel time
array times[&

* New variabl
array intersl[
Auto
Plane
Transit;

array cross[%
TimeAuto
PlanAuto
TranAuto
AutoPlan
TimePlan
TranPlan
AutoTran
PlanTran
TimeTran;

set travel;

subject = _n_;

s for the alternatives;
m] autotime plantime trantime;

es that will contain the design:;
&m]

/*intercept for auto

/*intercept for plane
/*intercept for transit

eval(&m * &m)]

/*time of auto alternative
/*cross-effect of plane on auto
/*cross-effect of transit on auto
/*cross-effect of auto on plane
/*time of plane alternative

*/
*/
*/

*/
*/
*/
*/
*/

/*cross-effect of transit on planex/

/*cross—effect of auto on transit

*/

/*cross-effect of plane on transitx/

/*time of transit alternative

3

* Create &m observations for each choice set;
doi=1 to &m;
Mode = allmodes[i]; /* this alternative

Travtime =
Choice = 2
do j=1t
inters|[
do k =

times[i]; /* travel time

- (chosen eq mode);/* 1 - chosen
0o &m;

jl = (4 eq j); /* mode indicator
1 to &m;

*/

*/
*/
*/

*/

* (j=k) - time, otherwise, cross-effect;

cros
end;
end;
output;
end;
run;

s [&m* (j-1)+k]=times[k] *inters[j];
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proc print data=choice3(obs=9) label noobs;
var subject mode travtime choice auto plane transit
timeauto timeplan timetran autoplan autotran planauto
plantran tranauto tranplan;

run;
subject Mode Travtime Choice Auto Plane Transit

1 Auto 10.0 2 1 0 0

1 Plane 4.5 1 0 1 0

1 Transit 10.5 2 0 0 1

2 Auto 5.5 1 1 0 0

2 Plane 4.0 2 0 1 0

2 Transit 7.5 2 0 0 1

3 Auto 4.5 2 1 0 0

3 Plane 6.0 2 0 1 0

3 Transit 5.5 1 0 0 1
Time Time Time Auto Auto Plan Plan Tran Tran
Auto Plan Tran Plan Tran Auto Tran Auto Plan
10.0 0.0 0.0 0.0 0.0 4.5 0.0 10.5 0.0
0.0 4.5 0.0 10.0 0.0 0.0 0.0 0.0 10.5
0.0 0.0 10.5 0.0 10.0 0.0 4.5 0.0 0.0
5.5 0.0 0.0 0.0 0.0 4.0 0.0 7.5 0.0
0.0 4.0 0.0 5.5 0.0 0.0 0.0 0.0 7.5
0.0 0.0 7.5 0.0 5.5 0.0 4.0 0.0 0.0
4.5 0.0 0.0 0.0 0.0 6.0 0.0 5.5 0.0
0.0 6.0 0.0 4.5 0.0 0.0 0.0 0.0 5.5
0.0 0.0 5.5 0.0 4.5 0.0 6.0 0.0 0.0

PROC PHREG allows you to specify test statements for testing linear hypotheses of the parameters.
The test is a Wald test, which is based on the asymptotic normality of the parameter estimators. The
following SAS statements invoke PROC PHREG to fit the so called “Mother Logit” model that includes
all the cross-alternative effects. The TEST statement, with label ITA, specifies the null hypothesis that
cross-alternative effects AutoPlan, PlanTran, and TranAuto are 0. Since only three cross-alternative
effects are estimable and these are the first cross-alternative effects specified in the model, they account
for all the cross-alternative effects in the model.

proc phreg data=choice3;

model choice*choice(2) = auto plane transit timeauto timeplan
timetran autoplan plantran tranauto planauto tranplan
autotran / ties=breslow;

ITA: test autoplan,plantran,tranauto;

strata subject;

title ’Mother Logit Model’;

run;
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Mother Logit Model
The PHREG Procedure
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 46.142 24.781
AIC 46.142 40.781
SBC 46.142 49.137
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 21.3607 8 0.0062
Score 15.4059 8 0.0517
Wald 6.2404 8 0.6203
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Auto 1 -0.73812 3.05933 0.0582 0.8093 0.478
Plane 1 -3.62435 3.48049 1.0844 0.2977 0.027
Transit 0 0 . . . .
TimeAuto 1 -2.23433 1.89921 1.3840 0.2394 0.107
TimePlan 1 -0.10112 0.68621 0.0217 0.8829 0.904
TimeTran 1 0.09785 0.70096 0.0195 0.8890 1.103
AutoPlan 1 0.44495 0.68616 0.4205 0.5167 1.560
PlanTran 1 -0.53234 0.63481 0.7032 0.4017 0.587
TranAuto 1 1.66295 1.51193 1.2097 0.2714 5.275
PlanAuto 0 0
TranPlan 0 0
AutoTran 0 0
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Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq
IIA 1.6526 3 0.6475

The x? statistic for the Wald test is 1.6526 with 3 degrees of freedom, indicating that the cross-
alternative effects are not statistically significant (p = .6475). A generally more preferable way of
testing the significance of the cross-alternative effects is to compare the likelihood of the “Mother
logit” model with the likelihood of the reduced model with the cross- alternative effects removed. The
following SAS statements invoke PROC PHREG to fit the reduced model:

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto

timeplan timetran / ties=breslow;
strata subject;
title ’Reduced Model without Cross-Alternative Effects’;
run;

Reduced Model without Cross-Alternative Effects

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 46.142 27.153
AIC 46.142 37.153
SBC 46.142 42.376

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 18.9886 5 0.0019
Score 14.4603 5 0.0129
Wald 7.3422 5 0.1964
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Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Auto 1 1.71578 1.80467 0.9039 0.3417 5.561
Plane 1 -3.60073 3.30555 1.1866 0.2760 0.027
Transit 0 0 . . . .
TimeAuto 1 -0.79543 0.36327 4.7946 0.0285 0.451
TimePlan 1 0.12162 0.58954 0.0426 0.8366 1.129
TimeTran 1 -0.42184 0.25733 2.6873 0.1012 0.656

The chi-squared statistic for the likelihood ratio test of ITA is (27.153 — 24.781) = 2.372, which is not
statistically significant (p = .4989) when compared to a x? distribution with 3 degrees of freedom. This
is consistent with the previous result of the Wald test. (See pages 452, 459, 468, and 674 for other
discussions of ITA.)

Final Comments

For some discrete choice problems, the number of available alternatives is not the same for each indi-
vidual. For example, in a study of consumer brand choices of laundry detergents as prices change, data
are pooled from different locations, not all of which offer a brand that contains potash. The varying
choice sets across individuals can easily be accommodated in PROC PHREG. For individual j who
chooses from a set of m; alternatives, consider m; artificial times in which the chosen alternative has
an event time 1 and the unchosen alternatives have a censored time of 2. The analysis is carried out
in the same fashion as illustrated in the previous section.

Unlike the example of travel demand in which data for each individual are provided, choice data are
often given in aggregate form, with choice frequencies indicating the repetition of each choice. One
way of dealing with aggregate data is to expand the data to the individual level and carry out the
analysis as if you have nonaggregate data. This approach is generally not recommended, because it
defeats the purpose of having a smaller aggregate data set. PROC PHREG provides a FREQ statement
that allows you to specify a variable that identifies the frequency of occurrence of each observation.
However, with the specification of a FREQ variable, the artificial event time is no longer the only event
time in a given stratum, but has ties of the given frequency. With proper stratification, the Breslow
likelihood is proportional to the likelihood of the conditional logit model. Thus PROC PHREG can be
used to obtain parameter estimates and hypothesis testing results for the choice models.

The ties=discrete option should not be used instead of the ties=breslow option. This is especially
detrimental with aggregate choice data because the likelihood that PROC PHREG is maximizing may
no longer be the same as the likelihood of the conditional logit model. ties=discrete corresponds to
the discrete logistic model for genuinely discrete time scale, which is also suitable for the analysis of
case-control studies when there is more than one case in a matched set (Gail, Lubin, and Rubinstein
1981). For nonaggregate choice data, all ties= options give the same results; however, the resources
required for the computation are not the same, with ties=breslow being the most efficient.
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Once you have a basic understanding of how PROC PHREG works, you can use it to fit a variety of
models for the discrete choice data. The major involvement in such a task lies in reorganizing the data
to create the observations necessary to form the correct risk sets and the appropriate design variables.
There are many options in PROC PHREG that can also be useful in the analysis of discrete choice data.
For example, the offset= option allows you to restrict the coefficient of an explanatory variable to
the value of 1; the selection= option allows you to specify one of four methods for selecting variables
into the model; the outest= option allows you to specify the name of the SAS data set that contains
the parameter estimates, based on which you can easily compute the predicted probabilities of the
alternatives.

This article deals with estimating parameters of discrete choice models. There is active research in the
field of marketing research to use design of experiments to study consumer choice behavior. If you are
interested in this area, see Carson et al. (1994), Kuhfeld et al. (1994), and Lazari et al. (1994).



