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Review: The Sampling Design Process 

Fig. 11.1 

Define the Population 

Determine the Sampling Frame 

Select Sampling Technique(s) 

Determine the Sample Size 

Execute the Sampling Process 

Framing vs. Validating 

How to define?  Based on what? 
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1979: 45% in Taiwan 
PepsiCo global sales: $6 billion Half empty or half full? 

Review: New Product Introduction 

http://en.wikipedia.org/wiki/Image:Crystal-pepsi.jpg
http://en.wikipedia.org/wiki/Image:Glass-of-water.jpg
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Review: Multivariate Methods 

Dependence 

Methods 
How many variables are 

dependent? 

=1 

Scale of dependent variable? 

Interval 

Scale of independent variable? 

Interval  

Nominal 

Multiple regression 

Analysis of variance & covariance 

Dummy variable multiple regression 

Automatic interaction detector 

(CHAID) 

Sales Response Models 
“Impacts of price discount,  

memory size, models, and  

retail margin on sales” 

Market Segmentation,  
market profile, centaurs 
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Review: One-Way ANOVA 

 I.V. = CF1, CF2, CF3 

 D.V. = 10-point scale on informativeness 

CF1 CF2 CF3 

10 4 2 

9 5 3 

8 3 7 

10 4 4 

9 5 8 

y1 y2 y3 

Observation: yij 

Treatment mean: yj 

Grand mean: y 
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Chapter Sixteen 

Analysis of Variance and 
Covariance 
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Review: F-test 

 In honor of Sir Ronald A. Fisher 

 Fisher initially developed the statistic as the variance ratio in the 

1920s, where he analyzed its immense data from crop experiments 

since the 1840s, and developed the analysis of variance (ANOVA).  

 He is also known as one of the three principal founders of 

population genetics, Fisher's principle, the Fisherian runaway and 

sexy son hypothesis theories of sexual selection, and important 

contributions to statistics, including the maximum likelihood, fiducial 

inference, the derivation of various sampling distributions. 
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Review: F(isher) Test 

 Randomized Block Design 

 Decompose error term into  

   εij = bi + ε’ij  

 Latin Square Design 

 Decompose error term into  

   εij = b1 + b2 + ε’’ij  

 Factorial Design (N-way 
ANOVA) 

 Decompose treatment term into  

    τj = αi + βj + (αβ)ij  
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Issues in Interpretation: Interactions 
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Exercise (悲喜交加對決策的影响) 

 Use the example in p. 515 to identify 
eight different interaction patterns for a 
two factors ANOVA, both X1 and X2 
have two levels. 

 

X1 

Y 

X11 X12 

X21 

X22 
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悲喜交加對決策的影响 

A 

Y 

A1 A2 

B1 

B2 

(A) (B) (Y) 

A 

Y 

A1 A2 

B1 

B2 
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悲喜交加對決策的影响 

A 

Y 

A1 A2 

B1 

B2 

(A) (B) (Y) 

A 

Y 

A1 A2 

B1 

B2 
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Review: ANOVA-Family 

 One way ANOVA: one grouping (independent) 
variable, one dependent variable  

 Within-Subjects ANOVA: scores are obtained from 
the same subject measured on separate occasions  

 Factorial (n-way) ANOVA: more than one grouping 
(independent) variable, one dependent variable  

 Analysis of Covariance (ANCOVA): scores are 
obtained both before and after a treatment 
intervention, and pre-treatment scores are used to 
adjust post-treatment scores  

 Multivariate Analysis of Variance (MANOVA): two or 
more dependent variables 

 MANCOVA  
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Relationship Amongst Test, Analysis of Variance, 
Analysis of Covariance, & Regression 

Fig. 16.1 

One Independent One or More 

Metric Dependent Variable 

t Test 

Binary 

Variable 

One-Way Analysis 
of Variance 

One Factor 

N-Way Analysis 
of Variance 

More than 
One Factor 

Analysis of 
Variance (ANOVA) 

Categorical: 
Factorial 

Analysis of 
Covariance (ANCOVA) 

Categorical 
and Interval 

Regression 

Interval 

Independent Variables 

17-14 

Analysis of Covariance (ANCOVA) 

 Two group (treatment vs. control) 

quasi-experimental design  

 MX.T, is higher than the mean 

pretest score of the control 

group, MX.C. 

 ANCOVA: If we hold constant 

the pretest scores (i.e., the 

slopes of the regression lines 

are equivalent), is there a 

significant differences between 

the posttest scores for the two 

groups?   
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Analysis of Covariance (ANCOVA). 

17-16 

從通路效益看產品配置 
以蘇格蘭威士忌為例 

通路績效評估

資源投入
(行銷的Push/

Pull資源的使用)

通路效益
（對銷售及利潤
的產出績效）

產品別的配置

通路別的組合

連靜如 (2006)  
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Extension: DID (difference-in-Difference) 

• Difference in differences is a statistical technique used in the social sciences 

that attempts to mimic an experimental research design using observational 

study data, by studying the differential effect of a treatment on a 'treatment 

group' versus a 'control group' in a natural experiment.  

• It calculates the effect of a treatment (i.e., an explanatory variable or an 

independent variable) on an outcome (i.e., a response variable or dependent 

variable) by comparing the average change over time in the outcome variable 

for the treatment group, compared to the average change over time for the 

control group.  
• 由配對 t 統計可知，實驗組與對照組都個別有進步幅度（也就是兩
組都有一個平均值, Mex and Mcon），如果組別在進步幅度達顯著差
異（P < 0.05），而且又是實驗組的進步幅度顯著高於對照組(Mex 

>Mcon)，我們即可宣稱此差異即為實驗的淨效果。 
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Summary 

Types of Explanatory 

Variables  

Number of Dependent 

Variables  
Technique  

Metric  One  Multiple Regression  

Categorical  One  ANOVA  

Both  One  ANCOVA  

Metric  m  
Multivariate Multiple 

Regression  

Categorical  m  MANOVA  

Both  m  MANCOVA  
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Review: The GLM Procedure 
Specification Kind of Model 

Model  y=x1; 

Model  y=x1  x2; 

Model  y=x1  x1*x1; 

Model  y1 y2= x1  x2; 

Simple regression 

Multiple regression 

Polynomial regression 

Multivariate regression 

Model  y=a; 

Model  y=a  b  c; 

Model  y=a  b  a*b; 

Model  y=a  b(a)   c (b a); 

Model  y1 y2= a  b; 

One-way ANOVA 

Main effects model 

Factorial model  (with interaction) 

Nested model (hierarchical) 

Multivariate analysis of variance 

(MANOVA) 

Model  y=a  x1; 

Model  y=a  x1(a); 

Model  y=a  x1  x1*a; 

Analysis-of-covariance model (ANCOVA) 

Separate-slopes model 

Homogeneity-of-slopes model 

Chapter Seventeen 

Correlation and Regression 
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Linear regression 
 

 is the most widely used of all statistical 

 techniques 

 is the fitting of straight lines to data 

  was so-named by Sir Francis Galton, a 19th 

 century amateur scientist & adventurer who 

 was famous for his explorations and wrote a 

 best-selling book on “the art of travel” (still in 

 print) that introduced the sleeping bag & other 

 wilderness gear to the Western world 
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Product Moment Correlation 

 The product moment correlation, r, summarizes 
the strength of association between two metric 
(interval or ratio scaled) variables, say X and Y.   

 It is an index used to determine whether a linear or 
straight-line relationship exists between X and Y.   

 As it was originally proposed by Karl Pearson, it is 
also known as the Pearson correlation coefficient.  It 
is also referred to as simple correlation, bivariate 
correlation, or merely the correlation coefficient.   
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From a sample of n observations, X and Y, the product 
moment correlation, r, can be calculated as: 

r =

(X i - X )(Y i - Y )
i=1

n

(X i - X )2

i=1

n

(Y i - Y )2

i=1

n

Division of the numerator and denominator by (n-1) gives

r =

(X i - X )(Y i - Y )

n-1
i=1

n

(X i - X )2

n-1
i=1

n (Y i - Y )2

n-1
i=1

n

=
COVxy

SxSy

Product Moment Correlation 
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Regression Analysis 

Regression analysis examines associative relationships 
between a metric dependent variable and one or more  
independent variables in the following ways: 
 Determine whether the independent variables explain a 

significant variation in the dependent variable: whether a 
relationship exists. 

 Determine how much of the variation in the dependent 
variable can be explained by the independent variables:  
strength of the relationship. 

 Determine the structure or form of the relationship: the 
mathematical equation relating the independent and 
dependent variables. 

 Predict the values of the dependent variable.  
 Control for other independent variables when evaluating the 

contributions of a specific variable or set of variables.   
 Regression analysis is concerned with the nature and degree 

of association between variables and does not imply or 
assume any causality.  
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 Underlying assumptions 

 Linear relationship 

 Constant error variance (homoscedasticity) 

 Normally distributed errors 

 Independent observations 

 Stationary process 

Regression Analysis 

17-26 
Statistics Associated with Bivariate  
Regression Analysis 

 Bivariate regression model.  The basic regression 
equation is Yi =    +    Xi + ei, where Y = dependent 
or criterion variable, X = independent or predictor 
variable,     = intercept of the line,    = slope of the 
line, and ei is the error term associated with the i th 
observation. 
 

 Coefficient of determination.  The strength of 
association is measured by the coefficient of 
determination, r 2.  It varies between 0 and 1 and 
signifies the proportion of the total variation in Y that 
is accounted for by the variation in X.  
 

 Estimated or predicted value.  The estimated or 
predicted value of Yi is    i = a + b x, where    i is the 
predicted value of Yi, and a and b are estimators of     
    and     , respectively.  

 0  1

 0
 1

Y Y

 0  1



14 

17-27 
Statistics Associated with Bivariate  
Regression Analysis 

 Regression coefficient.  The estimated parameter 
b is usually referred to as the non-standardized 
regression coefficient.  

 

 Scattergram.  A scatter diagram, or scattergram, is 
a plot of the values of two variables for all the cases 
or observations.  

 

 Standard error of estimate.  This statistic, SEE, is 
the standard deviation of the actual Y values from the 
predicted     values.  

 

 Standard error.  The standard deviation of b, SEb, is 
called the standard error.  

Y

17-28 
Statistics Associated with Bivariate  
Regression Analysis 

 Standardized regression coefficient.  Also 
termed the beta coefficient or beta weight, this is 
the slope obtained by the regression of Y on X 
when the data are standardized.  

 

 Sum of squared errors.  The distances of all the 
points from the regression line are squared and 
added together to arrive at the sum of squared 
errors, which is a measure of total error,       .   

 

 t statistic.  A t statistic with n - 2 degrees of 
freedom can be used to test the null hypothesis 
that no linear relationship exists between X and Y, 
or H0:     = 0, where  t = b

SEb

 1

  e j
2
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17-29 Conducting Bivariate Regression Analysis 
Plot the Scatter Diagram 

 A scatter diagram, or scattergram, is a plot of the 
values of two variables for all the cases or observations.   

 The most commonly used technique for fitting a straight 
line to a scattergram is the least-squares procedure. 

 In fitting the line, the least-squares procedure  

 minimizes the sum of squared errors (MSE),         .  

 For every value of X, the errors (εi) have identical 
distributions with mean 0 and equal variances; Errors 
are independent, unrelated to each other; Errors are 
normally distributed 

 

  e j
2
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Plot of Attitude with Duration 
Figure 17.3 
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X 

(advertisement) 

Y 

(sales) 

Estimated Regression Line 

errors 

xbbŷ 10 

least-squares procedure 
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Decomposition of the Total 
Variation in Bivariate Regression 

Figure 17.5 

X2 X1 X3 X5 X4 

Y 

X 

Residual Variation 
SSres 
Explained Variation 
SSreg 
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Conducting Bivariate Regression Analysis 
Determine the Strength and Significance of Association 

To illustrate the calculations of r2, let us consider again the effect of attitude 
toward the city on the duration of residence.  It may be recalled from earlier 
calculations of the simple correlation coefficient that: 
  

SSy = (Y i - Y)2

i=1

n

= 120.9168 

  

    
    
    

r   2       =       
S   S   r   e   g   
S   S   y   
    
    
    

    

=       
S   S   y       -       S   S   r   e   s   

S   S   y   

The strength of association may then be calculated as follows: 

17-34 

Conducting Bivariate Regression Analysis 
Determine the Strength and Significance of Association 

The predicted values (  ) can be calculated using the regression 

equation: 

 

Attitude (   ) = 1.0793 + 0.5897 (Duration of residence) 

 

For the first observation in Table 17.1, this value is: 

 

(  ) = 1.0793 + 0.5897 x 10 = 6.9763. 

 

For each successive observation, the predicted values are, in order, 

8.1557, 8.1557, 3.4381, 8.1557, 4.6175, 5.7969, 2.2587, 11.6939, 

6.3866, 11.1042, and 2.2587.  

Y

Y

Y
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Multiple Regression 

The general form of the multiple regression model 

is as follows: 

 

 

which is estimated by the following equation: 

 

 = a + b1X1 + b2X2 + b3X3+ . . . + bkXk  

 

As before, the coefficient a represents the intercept, 

but the b's are now the partial regression 
coefficients.  

  Y =0 + 1X1 +2X2 +3X3+ . . . +kXk + e

Y

e 
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How “Good” is the Model? 

 T-stats, P-values for the Regression 
Coefficients 

 Standard Error of the Regression  
    (Standard Deviation of Residuals) 

 R Square (Coefficient of Determination) 

 Interpretation 

 Adjusted R Square 
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Analysis of the Residuals 

 What are the residuals? 

 Why are the residuals of such interest? 

 Tables, plots of residuals 
1. Histogram of residuals 

2. Residuals vs. predicted values  

3. Residuals vs. the independent variable 

4. Ordered plot of residuals (time series) 

17-38 

?),0( likelook  residuals  theDo 2

N
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2. Prediction Region 

17-40 
3. Residual Plot Indicating that Variance Is Not  
    Constant 

Figure 17.6 

Predicted Y Values 

R
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Heteroscedasticity 
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Residual Plot Indicating a Linear Relationship 
Between Residuals and Time 

Figure 17.7 

Time 
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Heteroscedasticity 
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Plot of Residuals Indicating that 
a Fitted Model Is Appropriate 

Figure 17.8 

Predicted Y Values 

R
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No evidence for 

increase in variability! 
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Comparing Models 

 How can we compare models? 

 In terms of descriptive “fit” (LSE) 

 In terms of underlying inferential assumptions 
(Xs in theoretical construct, MLE) 

 In terms of quality of forecasts (predicted value) 
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Stepwise Regression 

The purpose of stepwise regression is to select, from a large  
number of predictor variables, a small subset of variables that 
account for most of the variation in the dependent or criterion 
variable.  In this procedure, the predictor variables enter or are 
removed from the regression equation one at a time. There are 
several approaches to stepwise regression. 
 
 Forward inclusion.  Initially, there are no predictor variables 

in the regression equation.  Predictor variables are entered one 
at a time, only if they meet certain criteria specified in terms of 
F ratio.  The order in which the variables are included is based 
on the contribution to the explained variance.  

 Backward elimination.  Initially, all the predictor variables 
are included in the regression equation.  Predictors are then 
removed one at a time based on the F ratio for removal. 

 Stepwise solution.  Forward inclusion is combined with the 
removal of predictors that no longer meet the specified criterion 
at each step.  
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Multicollinearity 

 Multicollinearity arises when intercorrelations 
among the predictors are very high.   

 Multicollinearity can result in several problems, 
including: 
 The partial regression coefficients may not be 

estimated precisely.  The standard errors are likely 
to be high. 

 The magnitudes as well as the signs of the partial 
regression coefficients may change from sample 
to sample. 

 It becomes difficult to assess the relative 
importance of the independent variables in 
explaining the variation in the dependent variable.  

 Predictor variables may be incorrectly included or 
removed in stepwise regression. 

17-46 

Solution 1: Principal Component Regression 

X1 

X5 

X2 

X3 

X4 

F1 

F2 
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Solution 2: Residual Centering (Burrill 1997) 

 X1X2 = X1*X2 

 /* this step output the residuals of the 
interaction term*/ 

 PROC REG DATA=DATA1; 

 MODEL X1X2 = X1 X2; 

 OUTPUT OUT=DATA2 R=R_X1X2; 

 /* this step uses the residual as an 
orthogonalized variable */ 

 PROC REG DATA=DATA2; 

 MODEL Y = X1 X2 R_X1X2; 

 

17-48 
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17-49 

17-50 
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Relative Importance of Predictors 

Unfortunately, because the predictors are correlated, 
there is no unambiguous measure of relative 
importance of the predictors in regression analysis. 
However, several approaches are commonly used to 
assess the relative importance of predictor variables. 
 
 Statistical significance.  If the partial regression 

coefficient of a variable is not significant, as 
determined by an incremental F test, that variable is 
judged to be unimportant.  An exception to this rule 
is made if there are strong theoretical reasons for 
believing that the variable is important. 

 Square of the simple correlation coefficient.  
This measure, r 2, represents the proportion of the 
variation in the dependent variable explained by the 
independent variable in a bivariate relationship. 

17-52 

 Square of the partial correlation coefficient.  
This measure, R 2

yxi.xjxk, is the coefficient of 
determination between the dependent variable and 
the independent variable, controlling for the effects 
of the other independent variables. 

 Square of the part correlation coefficient.  This 
coefficient represents an increase in R 2 when a 
variable is entered into a regression equation that 
already contains the other independent variables. 

 Measures based on standardized coefficients 
or beta weights.  The most commonly used 
measures are the absolute values of the beta weights, 
|Bi| , or the squared values, Bi 

2.   
 Stepwise regression.  The order in which the 

predictors enter or are removed from the regression 
equation is used to infer their relative importance. 

 

Relative Importance of Predictors 
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General Issues in Regression Modeling 

 What should we be thinking about when 
building a regression model or interpreting 
a model built by someone else? 

 What is our goal? 

 Describing relationships in data? 

 Making inferences about relationships? 

 Building theories? 

 Forecasting future values? 

17-54 

 Choosing independent variables 

 Which variables to consider? 

 How to represent ordinal or categorical 
variables? 

 Are transformations helpful? 

 Is multicollinearity an issue? 

 Which combination of variables works best? 

 What is a good strategy for considering 
different combinations of variables? 

 How can we compare and choose 
regression models? 
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 The Dangers of Overfitting 

 Fitting vs. forecasting revisited 

 Tradeoffs:  More information vs. simpler 
model 

 Sample size vs. number of independent 
variables 

 A single model vs. multiple models 

 Dealing with outliers  

 Data transformation (z-score or log, etc.) 

 

General Issues in Regression Modeling 

17-56 
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17-58 
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17-60 
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17-62 
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