

## [Chapter Outline

1) Overview
2) Basic Concept
3) Relation to Regression and ANOVA
4) Discriminant Analysis Model
5) Statistics Associated with Discriminant Analysis
6) Multiple Discriminant Analysis
7) Stepwise Discriminant Analysis
8) Logit Regression

|  | Similarities and Differences between ANOVA, <br> Regression, and Discriminant Analysis |  |  |
| :--- | :--- | :--- | :--- |
|  | ANOVA | REGRESSION | DISCRIMINANT <br> (Logit) ANALYSIS |
| Similarities |  |  |  |
| Number of <br> dependent <br> variables | One | One | One |
| Number of <br> independent <br> variables | Multiple | Multiple | Multiple |
| Differences |  |  |  |
| Nature of the <br> dependent <br> variables | Metric | Metric | Categorical |
| Nature of the <br> independent <br> variables | Categorical | Metric | Metric |

## Discriminant Analysis

Discriminant analysis is a technique for analyzing data when the criterion or dependent variable is categorical and the predictor or independent variables are interval in nature.

The objectives of discriminant analysis are as follows:

- Development of discriminant functions, or linear combinations of the predictor or independent variables, which will best discriminate between the categories of the criterion or dependent variable (groups).
- Examination of whether significant differences exist among the groups, in terms of the predictor variables.
- Determination of which predictor variables contribute to most of the intergroup differences.
- Classification of cases to one of the groups based on the values of the predictor variables.
- Evaluation of the accuracy of classification.


## Discriminant Analysis

- When the criterion variable has two categories, the technique is known as two-group discriminant analysis.
- When three or more categories are involved, the technique is referred to as multiple discriminant analysis (e.g., L, M, H).
- In general, with $G$ groups and $k$ predictors, it is possible to estimate up to the smaller of $G-1$, or $k$, discriminant functions.
- The first function has the highest ratio of between-groups to within-groups sum of squares. The second function, uncorrelated with the first, has the second highest ratio, and so on. However, not all the functions may be statistically significant.



## [Geometric Interpretation

Fig. 18.1


## [Discriminant Analysis Model <br> The discriminant analysis model involves linear

 combinations of the following form:$D=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots+b_{k} X_{k}$
where
$D=$ discriminant score (predicted/estimated)
$b$ 's= discriminant coefficient or weight
$X$ ' $\mathrm{s}=$ predictor or independent variable

- The coefficients, or weights (b), are estimated so that the groups differ as much as possible on the values of the discriminant function.
- This occurs when the ratio of between-group sum of squares to withingroup sum of squares for the discriminant scores is at a maximum.


## Statistics Associated with Discriminant Analysis

- Canonical correlation. A canonical correlation is the correlation of two canonical (latent) variables, one representing a set of independent variables (predictors), the other a set of dependent variables (discriminant groups or segments).
- Centroid. The centroid is the mean values for the discriminant scores for a particular group. There are as many centroids as there are groups, as there is one for each group. The means for a group on all the functions are the group centroids.
- Classification matrix. Sometimes also called confusion or prediction matrix, the classification matrix contains the number of correctly classified and misclassified cases.



## Statistics Associated with Discriminant Analysis

- Discriminant function coefficients. The discriminant function coefficients (unstandardized) are the multipliers of variables, when the variables are in the original units of measurement.
- Discriminant scores. The unstandardized coefficients are multiplied by the values of the variables. These products are summed and added to the constant term to obtain the discriminant scores
- Eigenvalue. For each discriminant function, the Eigenvalue is the ratio of between-group to within-group sums of squares. Large Eigenvalues imply superior functions. (e.g., if the ratio of two eigenvalues is 1.4, then the first discriminant function accounts for $40 \%$ more between-group variance in the dependent categories than does the second discriminant function.)


## Statistics Associated with Discriminant Analysis

- F values and their significance. These are calculated from a one-way ANOVA, with the grouping variable serving as the categorical independent variable. Each predictor, in turn, serves as the metric dependent variable in the ANOVA.
- Group means and group standard deviations. These are computed for each predictor for each group.
- Pooled within-group correlation matrix. The pooled within-group correlation matrix is computed by averaging the separate covariance matrices for all the groups.



## Statistics Associated with Discriminant Analysis

thandardized discriminant function coefficients. The standardized discriminant function coefficients when the variables have been standardized to a mean of 0 and a variance of 1 .

- Structure correlations. Also referred to as discriminant loadings, the structure correlations represent the simple correlations between the predictors and the discriminant function.
- Total correlation matrix. If the cases are treated as if they were from a single sample and the correlations computed, a total correlation matrix is obtained.
- Wilks' $\lambda$. Sometimes also called the $U$ statistic, Wilks' for each predictor is the ratio of the within-group sum of squares to the total sum of squares. Its value varies between 0 and 1. Large values of (near 1) indicate,that group means do not seem to be different. Small values of (near 0) indicate that the group means seem to be different.



## Conducting Discriminant Analysis Formulate the Problem

Identify the objectives, the criterion variable, and the independent variables (from your theoretical construct)

- The criterion variable must consist of two or more mutually exclusive and collectively exhaustive categories.
- The predictor variables should be selected based on a theoretical model or previous research, or the experience of the researcher (theory).
- One part of the sample, called the estimation or analysis sample, is used for estimation of the discriminant function.
- The other part, called the holdout or validation sample, is reserved for validating the discriminant function.
- Often the distribution of the number of cases in the analysis and validation samples follows the distribution in the total sample.


|  |  | Info |  | dout O | Resort | Visits |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Table | 18.3 |
| No. | Resort Visit | Annual Family Income (\$000) | Attitude Toward Travel | Importance <br> Attached <br> to Family <br> Vacation | Household Size | Age of Head of Household | Amount <br> Spent on <br> Family <br> Vacation |
| 1 | 1 | 50.8 | 4 | 7 | 3 | 45 | M(2) |
| 2 | 1 | 63.6 | 7 | 4 | 7 | 55 | H (3) |
| 3 | 1 | 54.0 | 6 | 7 | 4 | 58 | M(2) |
| 4 | 1 | 45.0 | 5 | 4 | 3 | 60 | M(2) |
| 5 | 1 | 68.0 | 6 | 6 | 6 | 46 | H (3) |
| 6 | 1 | 62.1 | 5 | 6 | 3 | 56 | H (3) |
| 7 | 2 | 35.0 | 4 | 3 | 4 | 54 | L (1) |
| 8 | 2 | 49.6 | 5 | 3 | 5 | 39 | L (1) |
| 9 | 2 | 39.4 | 6 | 5 | 3 | 44 | H (3) |
| 10 | 2 | 37.0 | 2 | 6 | 5 | 51 | L (1) |
| 11 | 2 | 54.5 | 7 | 3 | 3 | 37 | M(2) |
| 12 | 2 | 38.2 | 2 | 2 | 3 | 49 | L (1) |

## Conducting Discriminant Analysis Estimate the Discriminant Function Coefficients

- The direct method involves estimating the discriminant function so that all the predictors are included simultaneously.
- In stepwise discriminant analysis, the predictor variables are entered sequentially, based on their ability to discriminate among groups





## Conducting Discriminant Analysis Determine the Significance of Discriminant Function

- The null hypothesis that, in the population, the means of all discriminant functions in all groups are equal can be statistically tested.
- In SPSS/SAS this test is based on Wilks' $\lambda$. If several functions are tested simultaneously (as in the case of multiple discriminant analysis), the Wilks' $\lambda$ statistic is the product of the univariate for each function. The significance level is estimated based on a chi-square transformation of the statistic.
- If the null hypothesis is rejected, indicating significant discrimination, one can proceed to interpret the results.


## Conducting Discriminant Analysis Interpret the Results

- The interpretation of the discriminant weights, or coefficients, is similar to that in multiple regression analysis.
- Some idea of the relative importance of the predictors can also be obtained by examining the structure correlations, also called canonical loadings or discriminant loadings. These simple correlations between each predictor and the discriminant function represent the variance that the predictor shares with the function (similar to the partial correlation concept).
- Another aid to interpreting discriminant analysis results is to develop a characteristic profile for each group by describing each group in terms of the group means for the predictor variables.


## Conducting Discriminant Analysis Access Validity of Discriminant Analysis

- Many computer programs, such as SPSS and SAS, offer a leave-one-out cross-validation option.
- The discriminant weights, estimated by using the analysis sample, are multiplied by the values of the predictor variables in the holdout sample to generate discriminant scores for the cases in the holdout sample. The cases are then assigned to groups based on their discriminant scores and an appropriate decision rule. The hit ratio, or the percentage of cases correctly classified, can then be determined by summing the diagonal elements and dividing by the total number of cases.
- Classification accuracy achieved by discriminant analysis should be at least $\mathbf{2 5 \%}$ greater than that obtained by chance (i.e., two groups, 75\%; three groups, 60\%)




## Results of Three-Group Discriminant Analysis

Table 18.5 cont.

| Structure Matrix: <br> Pooled within-groups correlations between discriminating variables and canonical discriminant functions (variables ordered by size of correlation within function) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | FUNC 1 | FUNC 2 |  |
| INCOME | 0.85556* | -0.27833 |  |
| HSIZE | 0.19319* | 0.07749 |  |
| VACATION | 0.21935 | 0.58829* |  |
| TRAVEL | 0.14899 | 0.45362* |  |
| AGE | 0.16576 | 0.34079* |  |
| Unstandardized canonical discriminant function coefficients |  |  |  |
|  | FUNC 1 | FUNC 2 |  |
| INCOME | 0.1542658 | -0.6197148E-01 |  |
| TRAVEL | 0.1867977 | 0.4223430 |  |
| VACATION | -0.6952264E-01 | 0.2612652 |  |
| HSIZE | -0.1265334 | 0.1002796 |  |
| AGE | $0.5928055 \mathrm{E}-01$ | $0.6284206 \mathrm{E}-01$ |  |
| (constant) | -11.09442 | -3.791600 |  |
| Canonical discriminant functions evaluated at group means (group centroids) |  |  |  |
| Group | FUNC 1 | FUNC 2 |  |
| 1 | -2.04100 | 0.41847 |  |
| 2 | -0.40479 | -0.65867 |  |
| 3 | 2.44578 | 0.24020 | Contd. |




## Stepwise Discriminant Analysis

- Stepwise discriminant analysis is analogous to stepwise multiple regression (see Chapter 17) in that the predictors are entered sequentially based on their ability to discriminate between the groups.
- An $F$ ratio is calculated for each predictor by conducting a univariate analysis of variance in which the groups are treated as the categorical variable and the predictor as the criterion variable.
- The predictor with the highest $F$ ratio is the first to be selected for inclusion in the discriminant function, if it meets certain significance and tolerance criteria.


## Stepwise Discriminant Analysis

- A second predictor is added based on the highest adjusted or partial $F$ ratio, taking into account the predictor already selected.
- The selection of the stepwise procedure is based on the optimizing criterion adopted. The Mahalanobis procedure is based on maximizing a generalized measure of the distance between the two closest groups.
- The order in which the variables were selected also indicates their importance in discriminating between the groups.



## [ SAS Exercise - Discriminant Analysis

 proc format;    value specfmt
                \(1=\) 'Bream'
                \(2=\) 'Roach'
                3='Whitef1sh'
                4=' Parkki'
                5 =' \(^{\prime}\) Perch'
                6=' P1ke'
                7='Smelt';
    data fish (drop=HtPct WidthPct);
            title 'Fish Measurement Data';
            input Species We1ght Length1 Length2 Length3 HtPct
                    WidthPct @@;
            Height=HtPct*Length3/100;
            Width=WidthPct*Length3/100;
            format Species specfmt.;
            symbol = put(Species, specfmt2.);
            datalines;
    \(1 \quad 242.0 \quad 23.2 \quad 25.4 \quad 30.0 \quad 38.4 \quad 13.4\)
    \(1 \quad 290.0 \quad 24.0 \quad 26.3 \quad 31.2 \quad 40.0 \quad 13.8\)
    \(1 \quad 340.0 \quad 23.9 \quad 26.5 \quad 31.1 \quad 39.8 \quad 15.1\)
    \(1 \quad 363.0 \quad 26.3 \quad 29.0 \quad 33.5 \quad 38.0 \quad 13.3\)
    [155 more records]
    

| ```proc candisc data=f1sh ncan=3 out=outcan; class Species; var Weight Length1 Length2 Length3 Height W1dth; run;``` |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The CANDISC Procedure |  |  |  |  |  |
|  | Canonical Correlation | Adjusted Canonical Correlation | Approximate Standard Error | Squared Canonical Correlation |  |
| 1 | 0.987463 | 0.986671 | 0.001989 | 0.975084 |  |
| 2 | 0.952349 | 0.950095 | 0.007425 | 0.906969 |  |
| 3 | 0.838637 | 0.832518 | 0.023678 | 0.703313 |  |
| 4 | 0.633094 | 0.623649 | 0.047821 | 0.400809 |  |
| 5 | 0.344157 | 0.334170 | 0.070356 | 0.118444 |  |
| 6 | 0.005701 | . | 0.079806 | 0.000033 |  |
| $\begin{aligned} & \text { Eigenvalues of } \operatorname{Inv}(E) \star H \\ & =\text { CanRsq/(1-CanRsq) } \end{aligned}$ |  |  |  |  |  |
|  | Eigenvalue | Difference | Proportion | Cumulative |  |
| 1 | 39.1350 | 29.3859 | 0.7518 | 0.7518 |  |
| 2 | 9.7491 | 7.3786 | 0.1873 | 0.9390 |  |
| 3 | 2.3706 | 1.7016 | 0.0455 | 0.9846 |  |
| 4 | 0.6689 | 0.5346 | 0.0128 | 0.9974 |  |
| 5 | 0.1344 | 0.1343 | 0.0026 | 1.0000 |  |
| 6 | 0.0000 |  | 0.0000 | 1.0000 |  |



Figure 21.4. Likelihood Ratio Test

The first canonical variable, Can1, shows that the linear combination of the centered variables Can1 $=-0.0006 \times$ Weight $-0.33 \times$ Length $1-2.49 \times$ Length $2+$ $2.60 \times$ Length $3+1.12 \times$ Height $-1.45 \times$ Width separates the species most effectively (see Figure 21.5).

Raw Canonical Coefticients

| Raw Canonical Coeficicients |  |  |  |
| :--- | ---: | ---: | ---: |
| Variable | Can1 | Can2 | Can3 |
| Weight | -0.000648508 | -0.005231659 | -0.005596192 |
| Length1 | -0.329435762 | -0.626598051 | -2.934324102 |
| Length2 | -2.486133674 | -0.690253987 | 4.045038893 |
| Length3 | 2.595648437 | 1.903175454 | -1.139264914 |
| Height | 1.121983854 | -0.714749340 | 0.283202557 |
| Width | -1.446386704 | -0.907025481 | 0.741486686 |
|  |  |  |  |

PROC CANDISC computes the means of the canonical variables for each class. The first canonical variable is the linear combination of the variables Weight, Length1, Length2, Length3, Height, and Width that provides the greatest difference (in terms of a univariate $F$-test) between the class means. The second canonical variable provides the greatest difference between class means while being uncorrelated with the first canonical variable.

| Fish Measurement Data |  |  |
| :--- | :---: | ---: |
| The CANDISC Procedure |  |  |
|  | Class Means on Canonical Variables |  |
| Species |  |  |
|  | Can1 | Can2 |
| Bream |  |  |
| Parkki | 10.94142464 | 0.52078394 |
| Perch | 2.58903743 | -2.54722416 |
| Pike | -4.47181389 | -1.70822715 |
| Roach | -4.89689441 | 9.22140791 |



Figure 27.6 Plot of First Two Canonical Variables


## [ <br> proc discrim data=f1sh; class Species; run;

The coefficients of the linear discriminant function are displayed (in Figure 31.4) with the default options METHOD=NORMAL and POOL=YES.

Figure 31.4 Linear Discriminant Function

| Linear Discriminant Function for Species |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Bream | Parkki | Perch | Pike | Roach | Smelt | Whitefish |
| Constant | -185.91682 | -64.92517 | -48.68009 | -148.06402 | -62.65963 | -19.70401 | -67.44603 |
| Weight | -0.10912 | -0.09031 | -0.09418 | -0.13805 | -0.09901 | -0.05778 | -0.09948 |
| Length1 | -23.02273 | -13.64180 | -19.45368 | -20.92442 | -14.63635 | -4.09257 | -22.57117 |
| Length2 | -26.70692 | -5. 38195 | 17.33061 | 6.19887 | -7.47195 | -3.63996 | 3.83450 |
| Length3 | 50.55780 | 20.89531 | 5.25993 | 22.94989 | 25.00702 | 10.60171 | 21.12638 |
| Height | 13.91638 | 8.44567 | -1.42833 | -8.99687 | -0.26083 | -1.84569 | 0.64957 |
| Width | -23.71895 | -13.38592 | 1.32749 | -9.13410 | -3.74542 | -3.43630 | -2.52442 |

A summary of how the discriminant function classifies the data used to develop the function is displayed last. In Figure 31.5, you see that only three of the observations are misclassified. The error-count estimates give the proportion of misclassified observations in each group. Since you

| $\Gamma$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of observations and Percent classified into species |  |  |  |  |  |  |  |  |
| From <br> species | Bream | Parkk1 | Perch | Pike | Roach | Smelt | Whitefish | Total |
| Bream | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |
|  | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| Parkk1 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 11 |
|  | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| Perch | 0 | 0 | 53 | 0 | 0 | 3 | 0 | 56 |
|  | 0.00 | 0.00 | 94.64 | 0.00 | 0.00 | 5.36 | 0.00 | 100.00 |
| P1ke | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 17 |
|  | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 |
| Roach | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 20 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 100.00 |
| Smelt | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 14 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 100.00 |
| Whitefish | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 100.00 |
| Total | 34 | 11 | 53 | 17 | 20 | 17 | 6 | 158 |
|  | 21.52 | 6.96 | 33.54 | 10.76 | 12.66 | 10.76 | 3.80 | 100.00 |
| Priors | 0.14286 | 0.14286 | 0.14286 | 0.14286 | 0.14286 | 0.14286 | 0.14286 |  |



Figure 67.5. Step Summary
All the variables in the data set are found to have potential discriminatory power.

```
596 PART III - DATA COLLECTION, PREPARATION, ANALYSIS, AND REPORTING
    Edition. The Multivariate>Discriminant Analysis task offers both two-group and multiple discriminant analysis.
Both two-group and multiple discriminant analysis can be performed using the Discriminant Analysis task within the SAS Learning Edition. To select this task click:
The steps for running three-group discriminant analysis are similar to these steps.
To run logit analysis or logistic regression using the SAS Learning Edition, click:
Analyze \(>\) Regression \(>\) Logistic...
The following are the detailed steps for running logit analysis with brand loyalty as the dependent variable and attitude toward the brand, attitude toward the product category, and attitude toward shopping as the independent variables using the data of Table 18.6.
1. Select ANALYZE from the SAS Learning Edition menu bar.
2. Click REGRESSION and then LOGISTIC.
3. Move LOYALTY to the Dependent variable task role.
4. Move BRAND, PRODUCT, and SHOPPING to the Quantitative variables task role.
5. Select MODEL EFFECTS.
6. Choose BRAND, PRODUCT, and SHOPPING as Main Effects.
7. Select MODEL OPTIONS.
8. Check SHOW CLASSIFICATION TABLE and enter 0.5 as the critical probability value.
9. Click RUN.
```



Table 3. Discriminant analysis on advantaged and disadvantaged firms


[^0]
## [Tre oogt Model

## DV is binary, and IX are metric



- Binary Logit model, or, Logistic Regression

$$
\begin{aligned}
\operatorname{logit}(p) & =\log \left(\frac{p}{1-p}\right)=\log (p)-\log (1-p) \\
& =\mathrm{a} 0+\mathrm{a} 1 X 1+\mathrm{a} 2 X 2+\mathrm{a} 3 X 3+\ldots+\mathrm{ak} X k=\sum \text { aiXi }
\end{aligned}
$$

- Where $p=$ probability of success; Xi are independent variables; ai are parameters to be estimated
- If $p$ is a probability of success then $p /(1-p)$ is the corresponding odds, and the logit of the probability is the logarithm of the odds; similarly the difference between the logits of two probabilities is the logarithm of the odds-ratio.


## The Logit Model

Further features of the LOGISTIC procedure enable you to do the following:

- control the ordering of the response categories
- compute a generalized $R^{2}$ measure for the fitted model
- reclassify binary response observations according to their predicted response probabilities
- test linear hypotheses about the regression parameters
- create a data set for producing a receiver operating characteristic curve for each fitted model
- specify contrasts to compare several receiver operating characteristic curves
- create a data set containing the estimated response probabilities, residuals, and influence diagnostics
- score a data set by using a previously fitted model


## [Logistic Regression with SAS

- Suppose the response variable Y is 0 or 1 binary (loyal, non-loyal), and X1 and X2 are two regressors of interest.
- SAS PROC LOGISTIC models the probability of $Y=0$ by default. In other words, SAS chooses the smaller value to estimate its probability. One way to change the default setting in order to model the probability of $\mathrm{Y}=1$ in SAS is to specify the DESCENDING option on the PROC LOGISTIC statement. That is, use:
- proc logistic descending;
- model $\mathrm{y}=\mathrm{x} 1 \mathrm{x}$;
- run;


```
Health Care Manage Sci (2008) 11:353-358
DOI 10.1007/s10729-008-9054-y
Detecting hospital fraud and claim abuse through diabetic outpatient services
```

Fen-May Liou • Ying-Chan Tang • Jean-Yi Chen

Received: 3 July 2007 / Accepted: 8 January 2008 / Published online: 19 January 2008
C Springer Science + Business Media, LLC 2008

Abstract Hospitals and health care providers tend to ge involved in exaggerated and fraudulent medical claims initiated by national insurance schemes. The present study applies data mining techniques to detect fraudulent or

1 Introduction

Healthcare fraud and abuse are of major concern in many countries, in some cases costing public and private financial



[^0]:    ${ }^{\text {a }}$ Cross-validation is done by recalculating the discriminant function for all firms other than the validated firm.
    ${ }^{\text {b }} 88.4 \%((70+52) / 138)$ of firms are correctly classified.
    ${ }^{\text {c }} 79.7 \%((64+46) / 138)$ of the cross-validated firms remain correctly classified.

