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Factor Analysis 

 Factor analysis is a general name denoting a class of 
procedures primarily used for data reduction and summarization.   

 Factor analysis is an interdependence technique in that an 
entire set of interdependent relationships is examined without 
making the distinction between dependent and independent 
variables. 

 Factor analysis is used in the following circumstances:  

 To identify underlying dimensions, or factors, that explain 
the correlations among a set of variables.   

 To identify a new, smaller, set of uncorrelated variables to 
replace the original set of correlated variables in subsequent 
multivariate analysis (regression or discriminant analysis).   

 To identify a smaller set of salient variables from a larger set 
for use in subsequent multivariate analysis (canonical 
analysis) 
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Average number of days the daily temperature falls to or below freezing (annual)  

Average number of days where measurable precipitation occurs (winter)  

Average amount of snow (annual)  

Average number of times peak wind speeds were > 50 mph (annual)  

Average number of hours that ice occurred per year  
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The concept of Interdependence  
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Linear Dependent 

Interdependence and Multicollinearity 

 MATRIX MULTIPLICATION: Let A be an mxn matrix and B be 
an nxm matrix, then AB is an mxm matrix 

= (X’ X)-1 X’ Y 
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Unique solution 

 INDEPENDENCE OF VECTORS  

 

If {x1,x2,…,xm} are independent 
then there exists no set of non-
zero Scalars  {a1, a2, . . . ,am} such 
that a1x1 + a2x2 + . . . + amxm = 0 

624

532





yx

yx

 DETERMINANTS: Finding the determinant of a matrix is a rule for 
finding a single valued representation of that matrix.   

DETERMINANTS 

RULES ABOUT DETERMINANTS  
1. |A| = |A'|  
2. |AB| = |A||B|  
3. If the rows or columns of A are linearly dependent, 

then |A| = 0 and A is said to be singular.  

Then,  |A| = a11a22 - a21a12 
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 RANK OF A MATRIX: Let A be an mxn matrix. The row rank of 
A is the largest number of linearly independent rows. If all the 
rows of A are linearly independent then A is said to be of full 
row rank. Column rank is the largest number of linearly 
independent columns.  

 if |Amxm| = 0 then r(A) < m  

RANK (Dimensions, constructs, factors) 

 Matrix Algebra 

 Scalar: a 

 Vector: a 

 Matrix: A 

 

 TRACE OF A MATRIX  

1. Tr A =  

2. tr(In) = n  

3. tr kA = k tr A, where k is a scalar  

4.  tr(AB) = tr(BA)  

  

Matrix Trace 
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Multiple Regression in matrix form 

 Matrix Algebra 

 Scalar: a 

 Vector: a 

 Matrix: A 

 

 Transpose matrix: A’ 

 Symmetric Matrix: A = A’ 

 Identity matrix: I 

 Null matrix: 0 

 Inverse Matrix: A-1 A = I 

 Orthogonal Matrix: PP’ = P’P = I  

Matrix Trace (Dimensions, constructs, factors) 
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 Theorem: Diagonal Reduction of a Matrix 

 Consider Amxn, r(A) = r. Then there exists an mxm 
matrix B and an nxn matrix C, both nonsingular, such 
that  

 

B A C 

m x m               m x n                n x n 

Observed data Underlie factors 

Matrix Trace (Dimensions, constructs, factors) 

 Eigenvalues 

 The purpose of eigenvalues is data reduction. You have 
the matrices of correlations (e.g., multicollinearity), and 
you want to distill it into something simpler. 

  is an eigenvalue of A iff there is a nonzero vector x 
such that Ax = x (The matrix A - I is singular, Det(A-
I) = 0). 

 The set of scalars that make this true are known as 
latent roots, eigen values, or characteristic roots.  

 In an n-dimensional system, we would have n eigenvalues 
with associated eigenvectors.  

Eigenvalue特徵值 (Dimensions, constructs, factors) 
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Matrix Algebra Overview 

 Linear dependent 

 Determinant  

 Rank 

 Trace (In) 

 Number of Eigenvalue >1 

 For any matrix B, we can always find A 
and C, such that 

Idempotent Matrix 冪等矩陣 

 M is said to be idempotent if M2=M 

 the sum of the square products B'B of a square matrix 
B can be written as (MB)'MB = B'MB  

 Using two different matrices B and C， it is possible to 

write the deviations from the mean of the sum of 
square products (B'C) as follows: (MB)'MC = B'MC.  

 tr A = rank A if A is idempotent.  
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Review: Multivariate Methods in Marketing 
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(Multidimensional Scaling), 
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Strategic Groups, Org. 

configuration and ambidexterity, 

smart specification strategy 

Factor Analysis Model 
Each variable (X) is expressed as a linear combination 
of underlying factors (F).  The covariation among the variables is 
described in terms of a small number of common factors plus a 
unique factor for each variable.  If the variables are standardized, 
the factor model may be represented as: 
 
 Xi =  i 1F1 +  i 2F2 +  i 3F3 + . . . +  imFm + ViUi  ,  

  
 where 
  
 Xi  = i th standardized variable 
   ij =  standardized multiple regression coefficient of  

  variable i on common factor j 
 F  = hypothetical, unobservable random variables in 
   linearly generating each Xi (unknown)   
 Vi = standardized regression coefficient of variable i on 

  unique factor i 
 Ui  = the unique factor for variable i 
 m  = number of common factors 
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The unique factors are uncorrelated with each other and 
with the common factors.  The common factors 
themselves can be expressed as linear combinations of 
the observed variables. 

 

 Fi = Wi1X1 + Wi2X2 + Wi3X3 + . . . + WikXk 

  

 where 

  

 Fi  = estimate of i th factor 

 Wi  = weight or factor score coefficient 

 k  = number of variables  

 

 

Factor Analysis Model 
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 It is possible to select weights or factor score coefficients 
so that the first factor explains the largest portion of the 
total variance.   

 Then a second set of weights can be selected, so that 
the second factor accounts for most of the residual 
variance, subject to being uncorrelated with the first 
factor.   

 This same principle could be applied to selecting 
additional weights for the additional factors. 

Factor Analysis Model 

Stepwise concept in regression 

Statistics Associated with Factor Analysis 

 Bartlett's test of sphericity. Bartlett's test of sphericity 
is a test statistic used to examine the hypothesis that the 
variables are uncorrelated in the population.  In other 
words, the population correlation matrix is an identity 
matrix; each variable correlates perfectly with itself (r = 1) 
but has no correlation with the other variables (r = 0).  

 Correlation matrix. A correlation matrix is a lower 
triangle matrix showing the simple correlations, r, between 
all possible pairs of variables included in the analysis.  The 
diagonal elements, which are all 1, are usually omitted.  
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 Communality. Communality is the amount of variance a 
variable shares with all the other variables being considered.  
This is also the proportion of variance explained by the 
common factors.  

 Eigenvalue. The eigenvalue represents the total variance 
explained by each factor.  

 Factor loadings. Factor loadings are simple correlations 
between the variables and the factors.  

 Factor loading plot. A factor loading plot is a plot of the 
original variables using the factor loadings as coordinates.  

 Factor matrix. A factor matrix contains the factor loadings 
of all the variables on all the factors extracted.  

Statistics Associated with Factor Analysis 

 Factor scores.  Factor scores are composite scores estimated 
for each respondent on the derived factors.  

 Kaiser-Meyer-Olkin (KMO) measure of sampling 
adequacy. The Kaiser-Meyer-Olkin (KMO) measure of sampling 
adequacy is an index used to examine the appropriateness of 
factor analysis.  High values (between 0.5 and 1.0) indicate 
factor analysis is appropriate.  Values below 0.5 imply that factor 
analysis may not be appropriate.  

 Percentage of variance. The percentage of the total variance 
attributed to each factor.  

 Residuals are the differences between the observed 
correlations, as given in the input correlation matrix, and the 
reproduced correlations, as estimated from the factor matrix.  

 Scree plot. A scree plot is a plot of the Eigenvalues against the 
number of factors in order of extraction.  

Statistics Associated with Factor Analysis 
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Conducting Factor Analysis 
RESPONDENT 

NUMBER   V1    V2    V3     V4     V5      V6

1 7.00 3.00 6.00 4.00 2.00 4.00

2 1.00 3.00 2.00 4.00 5.00 4.00

3 6.00 2.00 7.00 4.00 1.00 3.00

4 4.00 5.00 4.00 6.00 2.00 5.00

5 1.00 2.00 2.00 3.00 6.00 2.00

6 6.00 3.00 6.00 4.00 2.00 4.00

7 5.00 3.00 6.00 3.00 4.00 3.00

8 6.00 4.00 7.00 4.00 1.00 4.00

9 3.00 4.00 2.00 3.00 6.00 3.00

10 2.00 6.00 2.00 6.00 7.00 6.00

11 6.00 4.00 7.00 3.00 2.00 3.00

12 2.00 3.00 1.00 4.00 5.00 4.00

13 7.00 2.00 6.00 4.00 1.00 3.00

14 4.00 6.00 4.00 5.00 3.00 6.00

15 1.00 3.00 2.00 2.00 6.00 4.00

16 6.00 4.00 6.00 3.00 3.00 4.00

17 5.00 3.00 6.00 3.00 3.00 4.00

18 7.00 3.00 7.00 4.00 1.00 4.00

19 2.00 4.00 3.00 3.00 6.00 3.00

20 3.00 5.00 3.00 6.00 4.00 6.00

21 1.00 3.00 2.00 3.00 5.00 3.00

22 5.00 4.00 5.00 4.00 2.00 4.00

23 2.00 2.00 1.00 5.00 4.00 4.00

24 4.00 6.00 4.00 6.00 4.00 7.00

25 6.00 5.00 4.00 2.00 1.00 4.00

26 3.00 5.00 4.00 6.00 4.00 7.00

27 4.00 4.00 7.00 2.00 2.00 5.00

28 3.00 7.00 2.00 6.00 4.00 3.00

29 4.00 6.00 3.00 7.00 2.00 7.00

30 2.00 3.00 2.00 4.00 7.00 2.00

Table 19.1 

Conducting Factor Analysis 

Fig. 19.2 

Construction of the Correlation Matrix 

Method of Factor Analysis 

Determination of Number of Factors 

Determination of Model Fit 

Problem formulation 

Calculation of 
Factor Scores 

Interpretation of Factors 

Rotation of Factors 

Selection of 
Surrogate Variables 
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Conducting Factor Analysis 

Formulate the Problem 

 The objectives of factor analysis should be identified.   

 The variables to be included in the factor analysis should 
be specified based on past research, theory, and 
judgment of the researcher.  It is important that the 
variables be appropriately measured on an interval or 
ratio scale.   

 An appropriate sample size should be used.  As a rough 
guideline, there should be at least four or five times as 
many observations (sample size) as there are variables.  

Correlation Matrix 

 
 

Variables V1 V2 V3 V4 V5 V6 

V1 1.000      

V2 -0.530 1.000     

V3 0.873 -0.155 1.000    

V4 -0.086 0.572 -0.248 1.000   

V5 -0.858 0.020 -0.778 -0.007 1.000  

V6 0.004 0.640 -0.018 0.640 -0.136 1.000 

       
 

Table 19.2 

V1: prevention of cavities 
V3: Strong gum 
V5: prevention of decay  
      is not important 

V2: shiny teeth 
V4: Fresh teeth 
V6: attractive teeth 
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 The analytical process is based on a matrix of correlations 
between the variables.   

 Bartlett's test of sphericity can be used to test the null 
hypothesis that the variables are uncorrelated in the 
population: in other words, the population correlation 
matrix is an identity matrix.  If this hypothesis cannot be 
rejected, then the appropriateness of factor analysis should 
be questioned.   

 Another useful statistic is the Kaiser-Meyer-Olkin (KMO) 
measure of sampling adequacy.  Small values of the KMO 
statistic indicate that the correlations between pairs of 
variables cannot be explained by other variables and that 
factor analysis may not be appropriate.  

Conducting Factor Analysis 

Construct the Correlation Matrix 

 In principal components analysis, the total variance in the 
data is considered.  The diagonal of the correlation matrix 
consists of unities, and full variance is brought into the factor 
matrix.  Principal components analysis is recommended when the 
primary concern is to determine the minimum number of factors 
that will account for maximum variance in the data for use in 
subsequent multivariate analysis.  The factors are called principal 
components.  

 In common factor analysis, the factors are estimated based 
only on the common variance.  Communalities are inserted in the 
diagonal of the correlation matrix.  This method is appropriate 
when the primary concern is to identify the underlying 
dimensions and the common variance is of interest.  This method 
is also known as principal axis factoring.  

Conducting Factor Analysis 

Determine the Method of Factor Analysis 



2018/11/28 

19 

Results of Principal Components 

Analysis 

 

Communalities 
 

Variables Initial Extraction   
V1 1.000 0.926   
V2 1.000 0.723   
V3 1.000 0.894   
V4 1.000 0.739   
V5 1.000 0.878   
V6 1.000 0.790   
     
  

Initial Eigen values 
 

 Factor Eigen value % of variance Cumulat. % 
 1 2.731 45.520 45.520 
 2 2.218 36.969 82.488 
 3 0.442 7.360 89.848 
 4 0.341 5.688 95.536 
 5 0.183 3.044 98.580 
 6 0.085 1.420 100.000 
     
 

Table 19.3 
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Results of Principal Components 

Analysis 

 

Extraction Sums of Squared Loadings 
 

Factor Eigen value % of variance Cumulat. %  
1 2.731 45.520 45.520  
2 2.218 36.969 82.488  

 
 

Factor Matrix 
 

Variables Factor 1 Factor 2   
V1 0.928 0.253   
V2 -0.301 0.795   
V3 0.936 0.131   
V4 -0.342 0.789   
V5 -0.869 -0.351   
V6 -0.177 0.871   
     
 

 

Rotation Sums of Squared Loadings 
 

Factor Eigenvalue % of variance Cumulat. % 
1 2.688 44.802 44.802 
2 2.261 37.687 82.488 

 

Table 19.3, cont. 

Results of Principal Components Analysis 

 

Rotated Factor Matrix 
 

Variables Factor 1 Factor 2   
V1 0.962 -0.027   
V2 -0.057 0.848   
V3 0.934 -0.146   
V4 -0.098 0.845   
V5 -0.933 -0.084   
V6 0.083 0.885   
     
  

Factor Score Coefficient Matrix 
 

Variables Factor 1 Factor 2   
V1 0.358 0.011   
V2 -0.001 0.375   
V3 0.345 -0.043   
V4 -0.017 0.377   
V5 -0.350 -0.059   
V6 0.052 0.395   
     
 

Table 19.3, cont. 
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Factor Score Coefficient Matrix 
 

Variables V1 V2 V3 V4 V5 V6 

V1 0.926 0.024 -0.029 0.031 0.038 -0.053 

V2 -0.078 0.723 0.022 -0.158 0.038 -0.105 

V3 0.902 -0.177 0.894 -0.031 0.081 0.033 

V4 -0.117 0.730 -0.217 0.739 -0.027 -0.107 

V5 -0.895 -0.018 -0.859 0.020 0.878 0.016 

V6 0.057 0.746 -0.051 0.748 -0.152 0.790 

       
 

The lower-left triangle contains the reproduced  
correlation matrix; the diagonal, the communalities;  
the upper-right triangle, the residuals between the  
observed correlations and the reproduced (rotated) 
correlations. 

Results of Principal Components Analysis 

Table 19.3, cont. 

 A Priori Determination.   Sometimes, because of prior 
knowledge, the researcher knows how many factors to expect 
and thus can specify the number of factors to be extracted 
beforehand.   

  

 Determination Based on Eigenvalues.   In this approach, 
only factors with Eigenvalues greater than 1.0 are retained.  An 
Eigenvalue represents the amount of variance associated with 
the factor.  Hence, only factors with a variance greater than 1.0 
are included.  Factors with variance less than 1.0 are no better 
than a single variable, since, due to standardization, each 
variable has a variance of 1.0.  If the number of variables is less 
than 20, this approach will result in a conservative number of 
factors.  

Conducting Factor Analysis 

Determine the Number of Factors 
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 Determination Based on Scree Plot.   A scree plot is a 
plot of the Eigenvalues against the number of factors in 
order of extraction.  Experimental evidence indicates that 
the point at which the scree begins denotes the true 
number of factors.  Generally, the number of factors 
determined by a scree plot will be one or a few more than 
that determined by the Eigenvalue criterion.  

  

 Determination Based on Percentage of Variance.   
In this approach the number of factors extracted is 
determined so that the cumulative percentage of variance 
extracted by the factors reaches a satisfactory level.  It is 
recommended that the factors extracted should account 
for at least 60% of the variance. 

Conducting Factor Analysis 

Determine the Number of Factors 

Scree Plot 
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Fig. 19.3 



2018/11/28 

23 

 Determination Based on Split-Half Reliability.    
The sample is split in half and factor analysis is 
performed on each half.  Only factors with high 
correspondence of factor loadings across the two 
subsamples are retained. 

  

 Determination Based on Significance Tests. It is 
possible to determine the statistical significance of the 
separate Eigenvalues and retain only those factors that 
are statistically significant.  A drawback is that with large 
samples (size greater than 200), many factors are likely 
to be statistically significant, although from a practical 
viewpoint many of these account for only a small 
proportion of the total variance.  

Conducting Factor Analysis 

Determine the Number of Factors 

 Although the initial or unrotated factor matrix indicates the 
relationship between the factors and individual variables, it 
seldom results in factors that can be interpreted, because 
the factors are correlated with many variables.  Therefore, 
through rotation the factor matrix is transformed into a 
simpler one that is easier to interpret.  

 In rotating the factors, we would like each factor to have 
nonzero, or significant, loadings or coefficients for only 
some of the variables.  Likewise, we would like each 
variable to have nonzero or significant loadings with only a 
few factors, if possible with only one.   

 The rotation is called orthogonal rotation if the axes are 
maintained at right angles. 

Conducting Factor Analysis 

Rotate Factors 
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Rotation (transformation) 

Let T be any orthogonal matrix such that B = ΛT, B B’= ΛT (ΛT)’ = Λ Λ’. 

 The most commonly used method for rotation is the 
varimax procedure.  This is an orthogonal method of 
rotation that minimizes the number of variables with high 
loadings on a factor, thereby enhancing the 
interpretability of the factors.  Orthogonal rotation results 
in factors that are uncorrelated. (e.g., big five personality 
traits)  

 The rotation is called oblique rotation when the axes 
are not maintained at right angles, and the factors are 
correlated.  Sometimes, allowing for correlations among 
factors can simplify the factor pattern matrix.  Oblique 
rotation should be used when factors (constructs) in the 
population are likely to be strongly correlated. (e.g., GDP 
and population size) 

Conducting Factor Analysis Rotate Factors 



2018/11/28 

25 

Factor Matrix Before and After Rotation 

Factors 

(a) 

High Loadings 
Before Rotation 

Fig. 19.4 

(b) 

High Loadings 
After Rotation 

Factors 

Variables 

1 

2 

3 

4 

5 

6 

1 
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X 

X 
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X 
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X 

 

X 

X 

X 

1 

X 

 

X 

 

X 

2 

 

X 

 

X 

 

X 

Variables 

1 

2 

3 

4 

5 

6 

 A factor can then be interpreted in terms of the 
variables that load high on it.  

 Another useful aid in interpretation is to plot the 
variables, using the factor loadings as coordinates.  
Variables at the end of an axis are those that have 
high loadings on only that factor, and hence 
describe the factor.  

Conducting Factor Analysis 

Interpret Factors 
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Factor Loading Plot 

Fig. 19.5 

 1.0 
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Component Plot in  
Rotated Space  
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 V1 

 V3 

 V6 
 V2 

 V5 

 V4 

      Component      
Variable              1                  2    

 
V1           0.962         -2.66E-02 

V2         -5.72E-02     0.848 

V3           0.934         -0.146 

V4          -9.83E-02    0.854 

V5          -0.933         -8.40E-02 

V6           8.337E-02   0.885 

Rotated Component Matrix  
Component 2 

The factor scores for the ith factor may be 
estimated 

as follows: 

  

Fi = Wi1 X1 + Wi2 X2 + Wi3 X3 + . . . + Wik Xk 

Conducting Factor Analysis 

Calculate Factor Scores 
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 By examining the factor matrix, one could select for 
each factor the variable with the highest loading on 
that factor.  That variable could then be used as a 
surrogate variable 代理 for the associated factor.   

 However, the choice is not as easy if two or more 
variables have similarly high loadings.  In such a 
case, the choice between these variables should be 
based on theoretical and measurement 
considerations.   

Conducting Factor Analysis 

Select Surrogate Variables 

 The correlations between the variables can be 
deduced or reproduced from the estimated 
correlations between the variables and the factors.   

 The differences between the observed correlations 
(as given in the input correlation matrix) and the 
reproduced correlations (as estimated from the 
factor matrix) can be examined to determine 
model fit.  These differences are called residuals. 

Conducting Factor Analysis 

Determine the Model Fit 
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Results of Common Factor Analysis 

 

Communalities 
 

Variables Initial Extraction   
V1 0.859 0.928   
V2 0.480 0.562   
V3 0.814 0.836   
V4 0.543 0.600   
V5 0.763 0.789   
V6 0.587 0.723   
     
 

Barlett test of sphericity 
• Approx. Chi-Square = 111.314 
• df = 15 
• Significance = 0.00000 
• Kaiser-Meyer-Olkin measure of 

sampling adequacy = 0.660 

 

Initial Eigenvalues 
 

 Factor Eigenvalue % of variance Cumulat. % 
 1 2.731 45.520 45.520 
 2 2.218 36.969 82.488 
 3 0.442 7.360 89.848 
 4 0.341 5.688 95.536 
 5 0.183 3.044 98.580 
 6 0.085 1.420 100.000 
     
 

Table 19.4 

Results of Common Factor Analysis 

Table 19.4, cont. 
 

Extraction Sums of Squared Loadings 
 

Factor Eigenvalue % of variance Cumulat. % 
1 2.570 42.837 42.837 
2 1.868 31.126 73.964 

  

Factor Matrix 
 

Variables Factor 1 Factor 2   
V1 0.949 0.168   
V2 -0.206 0.720   
V3 0.914 0.038   
V4 -0.246 0.734   
V5 -0.850 -0.259   
V6 -0.101 0.844   
     
  

Rotation Sums of Squared Loadings 
 

 Factor Eigenvalue % of variance Cumulat. % 
 1 2.541 42.343 42.343 
 2 1.897 31.621 73.964 
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Rotated Factor Matrix 
 

Variables Factor 1 Factor 2   
V1 0.963 -0.030   
V2 -0.054 0.747   
V3 0.902 -0.150   
V4 -0.090 0.769   
V5 -0.885 -0.079   
V6 0.075 0.847   
     
 

 

Factor Score Coefficient Matrix 
 

Variables Factor 1 Factor 2   
V1 0.628 0.101   
V2 -0.024 0.253   
V3 0.217 -0.169   
V4 -0.023 0.271   
V5 -0.166 -0.059   
V6 0.083 0.500   
     
 

Results of Common Factor Analysis 

Table 19.4, cont. 

Results of Common Factor Analysis 

Table 19.4, cont. 

Factor Score Coefficient Matrix 
 

Variables V1 V2 V3 V4 V5 V6 

V1 0.928 0.022 -0.000 0.024 -0.008 -0.042 

V2 -0.075 0.562 0.006 -0.008 0.031 0.012 

V3 0.873 -0.161 0.836 -0.005 0.008 0.042 

V4 -0.110 0.580 -0.197 0.600 -0.025 -0.004 

V5 -0.850 -0.012 -0.786 0.019 0.789 0.003 

V6 0.046 0.629 -0.060 0.645 -0.133 0.723 

       
 

The lower-left triangle contains the reproduced  

correlation matrix; the diagonal, the communalities;  

the upper-right triangle, the residuals between the  

observed correlations and the reproduced correlations. 
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SAS example: Job Ratings 
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Xi =  i 1F1 +  i 2F2 +  i 3F3 + . . . +  imFm  

After Rotate=Varimax 
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SCREE PLOT 
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Orthogonal Matrix: PP’ = P’P = I 
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surrogate variable 代理 for the associated factor 
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Chapter Twenty-Two 

 
Structural Equation 

Modeling and Path 

Analysis 

 

 

 

 

 

Structural equation modeling (SEM), a procedure 
for estimating a series of dependence relationships 
among a set of concepts or constructs represented by 
multiple measured variables and incorporated into an 
integrated model. 

Path analysis   A special case of SEM with only 
single indicators for each of the variables in the 
causal model. In other words, path analysis is SEM 
with a structural model, but no measurement 
model. 

LISREL, an acronym for linear structural relations, 
is a statistical software package used in structural 
equation modeling. (ASIMPLIS, AMOS, EQA, 
Mplus, Mx, RAMONA) 
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Review - SAS manual 
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Exploratory vs. Confirmatory FA 

EFA CFA 

Oblique Rotation in CFA 
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EFA vs. CFA  

CFA assumption: knows exactly which item loads on what factor 

Deterministic reasoning 
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Confirmatory VS. Exploratory 

Inductive reasoning 歸納推理: 

Use the observed data to confirm 

or define the hypothetical construct  

as general rule to aid prediction 

and expectation. 

X2, the discrepancy measure, compared the sample (observed) covariance matrix 

with the implies model covariance matrix computed from the hypothetical structure 

and all the identified model parameters  

Confirmatory Factor Analysis 
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What might be wrong about data mining  

(a CFA without theory)? 

Structure Equation Model 

SEM=CFA + PA 

SAS TCALIS: FACTOR, LINEQS, LISMOD, PATH, and RAM 

Specification 
Estimation 
Evaluation 
Modification 
Parameter testing 

http://en.wikipedia.org/wiki/Image:Glass-of-water.jpg
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Inductive Reasoning 歸納推理 
 Locke, Berkeley, and Hume  (1711-1776) 

 Logical reasoning: one makes a series of observations and infers 

a new claim based on them  

 少年們得到了許多超速罰單  所以所有少年都超速。 

 Psychological reasoning (I-S explanation): one draws inferences 

from a limited number of observations to a general rule which will 

aid us in prediction and expectation (observations  statistical 

inferences  decision rule prediction and expectation) 

 冰是冷的 所有冰都是冷的 (future resemble the past) 

 Physics: Newton’s Theory of Gravitation 

 

 

統計歸納法的推論”原罪” 
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恆真句(Truism)的套套邏輯  

 恆真句(的同義反覆論述): C(A + B) = CA + CB 

 套套邏輯是指同義重覆。同義重覆的句子不可能
被事實否証或推翻，因此恆真句沒有解釋能力。 

 Survival of the fittest (適者生存) 

 widow of the late Mr. Smith (已故史密斯先生的遺孀) 

 資源能力學派(RBV)：VRIN principle (valuable, rare, 
inimitable, and non-substitutable) 

 CFA: two constructs are correlated, therefore the path 
coefficient (loading) is significant. 

How is knowledge acquired or developed?  

Determinism and Tautology 
 Immanuel Kant (康德): to a great extent we impose our structures 

on the world, in particular the world is Euclidean because this is 

the way we organize spatial positions.  

 Determinism in Newton’s theory (Einstein’s Theory of Relativity) 

 Irrational problem in scientific thinking 

 Tautology in strategic management: Porter’s generic strategy and 

resource-based view ( a(b+c) = ab + ac ) 

 Tautology in marketing: confirmation study in PLC, TAM, AIDA, 

and hierarchical models (did not generate any new knowledge) 

「如果這不是關說， 
  那什麼才是關說」 


