

Chapter Outline

- 1) Overview
- 2) Basic Concept
- 3) Factor Analysis Model
- 4) Statistics Associated with Factor Analysis
- 5) Conducting Factor Analysis
- 6) Applications of Common Factor Analysis
- 7) Summary

Chapter Outline

- 5) Conducting Factor Analysis
 - i. Problem Formulation
 - ii. Construction of the Correlation Matrix
 - iii. Method of Factor Analysis
 - iv. Number of of Factors
 - v. Rotation of Factors
 - vi. Interpretation of Factors
 - vii. Factor Scores
 - viii. Selection of Surrogate Variables
 - ix. Model Fit

Factor Analysis

- Factor analysis is a general name denoting a class of procedures primarily used for <u>data reduction</u> and <u>summarization</u>.
- Factor analysis is an interdependence technique in that an entire set of interdependent relationships is examined without making the distinction between dependent and independent variables.
- Factor analysis is used in the following circumstances:
 - To identify underlying dimensions, or **factors**, that explain the correlations among a set of variables.
 - To identify a new, smaller, set of uncorrelated variables to replace the original set of <u>correlated variables</u> in subsequent multivariate analysis (regression or discriminant analysis).
 - To identify a smaller set of <u>salient variables</u> from a larger set for use in subsequent multivariate analysis (canonical analysis)

curement Decision Factors and the Inves lectronics Industry in China	nent Decision Factors and the Investment Intention onics Industry in China					Min-Hua Wu Ying-Chan Tang Chung-Yung Tai C. Y. Kedy Chang		
表1 採購決策條	表1 採購決策條件之因素分析結果摘要							
题项和内容	構面	因素	特徵	累積解 釋變異 (%)	Cronbach's α值			
1.供應商提供產品與服務的價格一致性		0.916						
2.透過標準化和加工程序使成本降低	橋 佔	0.898						
3.供應商的成本管理計畫之有效性	1月 1日	0.884	10.48	34.94	0.706			
4.對有可使成本降低機會之認知的反應活動	71 11	0.863						
5.對供應商之整體價值態度		0.851						
6.從供應商收到產品的品質		0.910						
7.對供應商之整體品質態度	品質	0.898						
8.從供應商得到產品的可信度	追求	0.879	5.50	53.27	0.670			
9.供應商對達到產品品質與績效的一致性		0.870						
10.要求與執行錯誤更正活動的供應商品質系統		0.807				-		
11.對供應商顧客服務與銷售行為表現超過期望		0.869						
12.供應商對顧客服務與銷售表現之認知程度	東棠	0.861						
13.供應商的顧客服務與銷售行為反應時間	期待	0.851	3.12	63.68	0.696			
14.與供應商顧客服務與銷售之合作性		0.824						
15.對供應商之整體服務與銷售表現態度		0.815						

4

DOES FIRM PERFORMANCE REVEAL ITS OWN CAUSES? THE ROLE OF BAYESIAN INFERENCE

Y.-E. Tang and F.-M. Liou

Table 1. Principal component analysis of financial indicators and the resulting resource configurations

Financial	Resource configuration					
mucators	Factor1: Relationship advantage	Factor2: Management ability	Factor3: Knowledge management			
Accounts receivable turnover	0.578	-0.085	0.338			
CGS/sales	-0.677	-0.204	-0.417			
Inventory turnover	0.595	0.053	-0.033			
Accounts payable turnover	0.684	0.008	0.043			
R&D/sales	0.238	0.046	0.859			
SG&A/sales	-0.063	-0.184	0.812			
Depreciation/sales	0.034	0.870	0.014			
Tax/sales	0.568	-0.229	-0.379			
Fixed assets turnover	0.017	-0.793	0.101			
Eigen value	2.36	1.56	1.45			
Accumulated variance (%)	0.26	0.43	0.60			

Bold numbers indicate a high correlation between the common factor and the corresponding financial indicator (greater than 0.5).

Factor Analysis Model

Each variable (X) is expressed as a linear combination of underlying factors (F). The covariation among the variables is described in terms of a small number of common factors plus a unique factor for each variable. If the variables are standardized, the factor model may be represented as:

$$X_{i} = \lambda_{i1}F_{1} + \lambda_{i2}F_{2} + \lambda_{i3}F_{3} + \ldots + \lambda_{im}F_{m} + V_{i}U_{i},$$

where

Xi	=	<i>i</i> th standardized variable
λ _{ii}	=	standardized multiple regression coefficient of
F V _i	=	variable <i>i</i> on <u>common factor</u> <i>j</i> hypothetical, unobservable random variables in linearly generating each X _i (unknown) standardized regression coefficient of variable <i>i</i> on
		unique factor i
U_i	=	the unique factor for variable <i>i</i>
т	=	number of common factors

Factor Analysis Model The unique factors are uncorrelated with each other and with the common factors. The common factors themselves can be expressed as linear combinations of the observed variables. $F_i = W_{i1}X_1 + W_{i2}X_2 + W_{i3}X_3 + \ldots + W_{ik}X_k$ where estimate of *i*th factor Fi = Wi = weight or factor score coefficient k = number of variables

Factor Analysis Model

- It is possible to select weights or factor score coefficients so that the first factor explains the largest portion of the total variance. Stepwise concept in regression
- Then a second set of weights can be selected, so that the second factor accounts for most of the residual variance, subject to being uncorrelated with the first factor.
- This same principle could be applied to selecting additional weights for the additional factors.

triangle matrix showing the simple correlations, *r*, between all possible pairs of variables included in the analysis. The diagonal elements, which are all 1, are usually omitted.

Statistics Associated with Factor Analysis

- Communality. Communality is the amount of variance a variable shares with all the other variables being considered. This is also the proportion of variance explained by the common factors.
- **Eigenvalue**. The eigenvalue represents the total variance explained by each factor.
- Factor loadings. Factor loadings are simple correlations between the variables and the factors.
- Factor loading plot. A factor loading plot is a plot of the original variables using the factor loadings as coordinates.
- Factor matrix. A factor matrix contains the factor loadings of all the variables on all the factors extracted.

- Residuals are the differences between the observed correlations, as given in the input correlation matrix, and the reproduced correlations, as estimated from the factor matrix.
- Scree plot. A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction.

DIE 19.1						
RESPONDEN	Г					
NUMBER	ર V1	V2	V3	V4	V5	V6
	1 7.00	3.00	6.00	4.00	2.00	4.00
	2 1.00	3.00	2.00	4.00	5.00	4.00
	<u> </u>	2.00	7.00	4.00	1.00	3.00
	4 4.00	5.00	4.00	6.00	2.00	5.00
	5 1.00	2.00	2.00	3.00	6.00	2.00
	6.00	3.00	6.00	4.00	2.00	4.00
	7 5.00	3.00	6.00	3.00	4.00	3.00
	6.00	4.00	7.00	4.00	1.00	4.00
	9 3.00	4.00	2.00	3.00	6.00	3.00
1	0 2.00	6.00	2.00	6.00	7.00	6.00
1	1 6.00	4.00	7.00	3.00	2.00	3.0
1:	2 2.00	3.00	1.00	4.00	5.00	4.0
1:	3 7.00	2.00	6.00	4.00	1.00	3.0
1.	4 4.00	6.00	4.00	5.00	3.00	6.0
1	5 1.00	3.00	2.00	2.00	6.00	4.0
10	6.00	4.00	6.00	3.00	3.00	4.0
1	7 5.00	3.00	6.00	3.00	3.00	4.0
1	8 7.00	3.00	7.00	4.00	1.00	4.0
1	9 2.00	4.00	3.00	3.00	6.00	3.0
20	0 3.00	5.00	3.00	6.00	4.00	6.0
2	1 1.00	3.00	2.00	3.00	5.00	3.00
2:	2 5.00	4.00	5.00	4.00	2.00	4.0
2:	3 2.00	2.00	1.00	5.00	4.00	4.00
24	4 4.00	6.00	4.00	6.00	4.00	7.0
2	5 6.00	5.00	4.00	2.00	1.00	4.0
20	6 3.00	5.00	4.00	6.00	4.00	7.0
2	7 4.00	4.00	7.00	2.00	2.00	5.0
2	8 3.00	7.00	2.00	6.00	4.00	3.0
2	9 4.00	6.00	3.00	7.00	2.00	7.0
3	2 00	3.00	2.00	4.00	7.00	2.0

16

Conducting Factor Analysis Formulate the Problem

- The objectives of factor analysis should be identified.
- The variables to be included in the factor analysis should be specified based on past research, theory, and judgment of the researcher. It is important that the variables be appropriately measured on an interval or ratio scale.
- An appropriate sample size should be used. As a rough guideline, there should be at least four or five times as many observations (sample size) as there are variables.

Variables	V1	V2	V3	V4	V5	V6	
	1.000	1					
V2	-0.530	1.000					
<u>V3</u>	0.873	-0.155	1.000				
V4	-0.086	0.572	-0.248	1.000			
V5	-0.858	0.020	-0.778	-0.007	1.000		
V6	0.004	0.640	-0.018	0.640	-0.136	1.000	
V1: preve V3: Stron V5: preve is pot	ntion of g gum ntion of	cavities decay	V2: shiny teeth V4: Fresh teeth V6: attractive teeth				

Conducting Factor Analysis Construct the Correlation Matrix

- The analytical process is based on a matrix of correlations between the variables.
- <u>Bartlett's test of sphericity</u> can be used to test the null hypothesis that the variables are uncorrelated in the population: in other words, the population correlation matrix is an identity matrix. If this hypothesis cannot be rejected, then the appropriateness of factor analysis should be questioned.
- Another useful statistic is the <u>Kaiser-Meyer-Olkin (KMO)</u> measure of sampling adequacy. Small values of the KMO statistic indicate that the correlations between pairs of variables cannot be explained by other variables and that factor analysis may not be appropriate.

Conducting Factor Analysis Determine the Method of Factor Analysis

- In principal components analysis, the total variance in the data is considered. The diagonal of the correlation matrix consists of unities, and full variance is brought into the factor matrix. Principal components analysis is recommended when the primary concern is to determine the <u>minimum number of factors</u> that will account for maximum variance in the data for use in subsequent multivariate analysis. The factors are called *principal components*.
- In common factor analysis, the factors are estimated based only on the common variance. Communalities are inserted in the diagonal of the correlation matrix. This method is appropriate when the primary concern is to <u>identify the underlying</u> <u>dimensions</u> and the common variance is of interest. This method is also known as *principal axis factoring*.

Results	of Principa	ai Compo	onents	
Analysis				
Table 19 3				
Communalitie	<u>es</u>			
Variables	Initial Ext	raction		
V1	1.000	0.926		
V2	1.000	0.723		
V3	1.000	0.894		
V4	1.000	0.739		
V5	1.000	0.878		
V6	1.000	0.790		
Initial Eigen	values			
	values			
	Factor	Eigen value	% of variance	Cumulat. %
	1	2.731	45.520	45.520
	2	2.218	36.969	82.488
	3	0.442	7.360	89.848
	4	0.341	5.688	95.536
	5	0.183	3.044	98.580
	-	0.005	1 4 2 0	100 000

Aridiysis Table 19.3, cont. Extraction Sums of Squared Loadings Factor Eigen value % of variance Cumulat. % 1 2.731 45.520 45.520 2 2.218 36.969 82.488 Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871	Resul	Its of Principal Components
Table 19.3, cont. Extraction Sums of Squared Loadings Factor Eigen value % of variance Cumulat. % 1 2.731 45.520 45.520 2 2.218 36.969 82.488 Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %	Analy	
Extraction Sums of Squared Loadings Factor Eigen value % of variance Cumulat. % 1 2.731 45.520 45.520 2 2.218 36.969 82.488 Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		Table 19.3, cont.
Factor Eigen value % of variance Cumulat. % 1 2.731 45.520 45.520 2 2.218 36.969 82.488 Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		Extraction Sums of Squared Loadings
1 2.731 45.520 45.520 2 2.218 36.969 82.488 Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		Factor Eigen value % of variance Cumulat. %
Factor Matrix Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		1 2.731 45.520 45.520 2 2.218 36.969 82.488
Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		Factor Matrix
Variables Factor 1 Factor 2 V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		
V1 0.928 0.253 V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		Variables Factor 1 Factor 2
V2 -0.301 0.795 V3 0.936 0.131 V4 -0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 <u>Rotation Sums of Squared Loadings</u> Factor Eigenvalue % of variance Cumulat. %		V1 0.928 0.253
V3 0.342 0.789 V5 -0.869 -0.351 V6 -0.177 0.871 Rotation Sums of Squared Loadings Factor Eigenvalue % of variance Cumulat. %		V2 -0.301 0.795 V3 0.936 0.131
V5 -0.869 -0.351 V6 -0.177 0.871 <u>Rotation Sums of Squared Loadings</u> Factor Eigenvalue % of variance Cumulat, %		V4 -0.342 0.789
V6 -0.177 0.871 <u>Rotation Sums of Squared Loadings</u> Factor Eigenvalue % of variance Cumulat. %		V5 -0.869 -0.351
Rotation Sums of Squared Loadings		V6 -0.177 0.871
Factor Eigenvalue % of variance Cumulat. %		Rotation Sums of Squared Loadings
ractor Eigenvalue % of Variance Cumulat. %		Factor Financia (/ afunianza Cumulat (/
1 2.688 44.802 44.802		1 2.688 44.802 44.802
2 2.261 37.687 82.488		2 2.261 37.687 82.488

Results of	Princinal	Compo	nente Ai	nalveie	
Results of	i illicipai	Combo		1019515	
Table 19.3, cont					
Rotated Fact	or Matrix				
<u>itotatou rao</u>					
Variables	Factor 1	Factor 2			
	0.962	-0.027			
V3	0.934	-0.146			
V4	-0.098	0.845			
V5	-0.933	-0.084			
V6	0.083	0.885			
Factor Score	• Coefficient	Matrix			
Variables	Factor 1	Factor 2			
VI V2	0.358	0.011			
VZ V2	-0.001	0.375			
V3 V4	-0.017	-0.043			
V4 V5	-0.017	-0.050			
V6	0.550	0.395			
	0.052	0.555			

Results of Principal Components Analysis

Table 19.3, cont.

The lower-left triangle contains the reproduced correlation matrix; the diagonal, the communalities; the upper-right triangle, the residuals between the observed correlations and the reproduced (rotated) correlations.

Variables	V1	V2	V3	V4	V5	V6
V1	0.926	0.024	-0.029	0.031	0.038	-0.053
V2	-0.078	0.723	0.022	-0.158	0.038	-0.105
V3	0.902	-0.177	0.894	-0.031	0.081	0.033
V4	-0.117	0.730	-0.217	0.739	-0.027	-0.107
V5	-0.895	-0.018	-0.859	0.020	0.878	0.016
V6	0.057	0.746	-0.051	0.748	-0.152	0.790

Conducting Factor Analysis Determine the Number of Factors

- A Priori Determination. Sometimes, because of prior knowledge, the researcher knows how many factors to expect and thus can specify the number of factors to be extracted beforehand.
- Determination Based on Eigenvalues. In this approach, only factors with Eigenvalues greater than 1.0 are retained. An Eigenvalue represents the amount of variance associated with the factor. Hence, only factors with a variance greater than 1.0 are included. Factors with variance less than 1.0 are no better than a single variable, since, due to standardization, each variable has a variance of 1.0. If the number of variables is less than 20, this approach will result in a conservative number of factors.

Conducting Factor Analysis Determine the Number of Factors

- Determination Based on Scree Plot. A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction. Experimental evidence indicates that the point at which the scree begins denotes the true number of factors. Generally, the number of factors determined by a scree plot will be one or a few more than that determined by the Eigenvalue criterion.
- Determination Based on Percentage of Variance. In this approach the number of factors extracted is determined so that the cumulative percentage of variance extracted by the factors reaches a satisfactory level. It is recommended that the factors extracted should account for at least 60% of the variance.

Conducting Factor Analysis Determine the Number of Factors

- Determination Based on <u>Split-Half Reliability</u>. The sample is split in half and factor analysis is performed on each half. Only factors with high correspondence of factor loadings across the two subsamples are retained.
- Determination Based on Significance Tests. It is possible to determine the statistical significance of the separate Eigenvalues and retain only those factors that are statistically significant. A drawback is that with large samples (size greater than 200), many factors are likely to be statistically significant, although from a practical viewpoint many of these account for only a small proportion of the total variance.

Conducting Factor Analysis Rotate Factors

- Although the initial or unrotated factor matrix indicates the relationship between the factors and individual variables, it seldom results in factors that can be interpreted, because the factors are correlated with many variables. Therefore, through rotation the factor matrix is transformed into a simpler one that is easier to interpret.
- In rotating the factors, we would like each factor to have nonzero, or significant, loadings or coefficients for only some of the variables. Likewise, we would like each variable to have nonzero or significant loadings with only a few factors, if possible with only one.
- The rotation is called **orthogonal rotation** if the axes are maintained at right angles.

<section-header><list-item>

Conducting Factor Analysis Select Surrogate Variables

- By examining the factor matrix, one could select for each factor the variable with the highest loading on that factor. That variable could then be used as a <u>surrogate variable</u>代理 for the associated factor.
- However, the choice is not as easy if two or more variables have similarly high loadings. In such a case, the choice between these variables should be based on theoretical and measurement considerations.

Conducting Factor Analysis Determine the Model Fit

- The correlations between the variables can be deduced or reproduced from the estimated correlations between the variables and the factors.
- The differences between the observed correlations (as given in the input correlation matrix) and the reproduced correlations (as estimated from the factor matrix) can be examined to determine model fit. These differences are called *residuals*.

ults of C	common	Factor	r Analy	'sis
Table 19.4,	cont.			
Extraction Sun	ns of Squared Loa	dings		
Factor E 1 2	igenvalue % of v 2.570 1.868	ariance Cu 42.837 31.126	imulat. % 42.837 73.964	
Factor Ma	<u>itrix</u>			
Variables V1 V2 V3 V4 V5 V6	Factor 1 0.949 -0.206 0.914 -0.246 -0.850 -0.101	Factor 0.16 0.72 0.03 0.73 -0.25 0.84	2 58 20 58 59 59 54	
Rotation Sum	of Squared Load	ings		
	Factor Eig	envalue %	o of variance	Cumulat. %
	1 2	2.541 1.897	42.343 31.621	42.343 73.964

Resul	ts of Comm	ion Fac	ctor An	alysis	;
	Rotated Fac	ctor Matrix			
	Variables V1 V2 V3 V4 V5 V6 Eactor Scot	Factor 1 0.963 -0.054 0.902 -0.090 -0.885 0.075	Factor 2 -0.030 0.747 -0.150 0.769 -0.079 0.847		
	Variables V1 V2 V3 V4 V5 V6	Factor 1 0.628 -0.024 0.217 -0.023 -0.166 0.083	Factor 2 0.101 0.253 -0.169 0.271 -0.059 0.500		

P	roc factor dat rotate=varin	a=jobrati ax;	ngs (drop=	'Overall	Rating'n) p	riors=smc			
-	un,								
			The FACTOR Pr	ocedure					
		Initial Fac	tor Method:	Principal Fa	ctors				
		Prior Con	mmunality Est	imates: SMC					
				Ju	lqment				
	Communication	Problem	Learni	ng	Under Obse	rvational			
	Skills	Solving	Abili	ty Pr	essure	Skills			
	0.62981394	0.58657431	0.610098	871 0.63	766021 0	.67187583			
	Willingness								
	to Confront	Inter	est Inte	rpersonal	Desire	for			
	Problems	in Peop	ple Se	nsitivity	Self-Improven	ent			
	0 64770905	0 75641	= 1.0	75594901	0 57460	176			
	0.64//9805	0.75641	519 (0.5/460	17.0			
				Physical					
	Appearance	ce Depend	lability	Ability	Integrity				
	0.455053	04 0.0	53449045	0.42245324	0.68195454				
	1	Eigenvalues of	f the Reduced	Correlation	Matrix				
		TOTAL = 8.0	10403010 Ave	arage = 0.620.	35678				
		Eigenvalue	Difference	Proportion	n Cumulative				
	1	6.17760549	4.71531946	0.766	0.7660				
	2	1.46228602	0.90183348	0.181	3 0.9473				
	3	0.56045254	0.28093933	0.069	5 1.0168				
	4	0.27951322	0.04766016	0.034	7 1.0515				
	5	0.23185305	0.16113428	0.028	7 1.0802				
	6	0.07071877	0.07489624	0.008	1.0890				
	7	00417747	0.03387533	-0.000	5 1.0885				
	8	03805279	0.04776534	-0.004	7 1.0838				
	9	08581814	0.02438060	-0.010	5 1.0731				
	10	11019874	0.01452741	-0.013	7 1.0595				
	11	12472615	0.02356465	-0.015	5 1.0440				
	12	14829080	0.05823605	-0.018	1.0256				
	13	20652684		-0.025	5 1.0000				
	2.6								
	3 fac	cors will be :	recained by t	ne PROPORTION	criterion.				

$X_i = \lambda_{i1}F\mathbf{1} + \lambda_{i2}F\mathbf{2} + \lambda_{i3}F\mathbf{3} + \ldots + \lambda_{im}F\mathbf{m}$

Initial Factor Method: Principal Factors

F	actor Pattern		
	Factor1	Factor2	Factor3
Communication Skills	0.75441	0.07707	-0.25551
Problem Solving	0.68590	0.08026	-0.34788
Learning Ability	0.65904	0.34808	-0.25249
Judgment Under Pressure	0.73391	-0.21405	-0.23513
Observational Skills	0.69039	0.45292	0.10298
Willingness to Confront Problems	0.66458	0.47460	0.09210
Interest in People	0.70770	-0.53427	0.10979
Interpersonal Sensitivity	0.64668	-0.61284	-0.07582
Desire for Self-Improvement	0.73820	0.12506	0.09062
Appearance	0.57188	0.20052	0.16367
Dependability	0.79475	-0.04516	0.16400
Physical Ability	0.51285	0.10251	0.34860
Integrity	0.74906	-0.35091	0.18656

The pattern matrix suggests that Factor1 represents general ability. All loadings for Factor1 in the Factor Pattern are at least 0.5. Factor2 consists of high positive loadings on certain task-related skills (Willingness to Confront Problems, Observational Skills, and Learning Ability) and high negative loadings on some interpersonal skills (Interpersonal Sensitivity, Interest in People, and Integrity).

Example 33.1: Principal Component Analysis

This example analyzes socioeconomic data provided by Harman (1976). The five variables represent total population, median school years, total employment, miscellaneous professional services and median house value. Each observation represents one of twelve census tracts in the Los Angeles Standard Metropolitan Statistical Area.

The first analysis is a principal component analysis. Simple descriptive statistics and correlations are also displayed. The following statements produce Output 33.1.1:

```
data SocioEconomics;
   title 'Five Socioeconomic Variables';
   title2 'See Page 14 of Harman: Modern Factor Analysis, 3rd Ed';
   input Population School Employment Services HouseValue;
   datalines;
                   2500
                              270
                                         25000
5700
         12.8
1000
         10.9
                    600
                              10
                                         10000
3400
         8.8
                   1000
                              10
                                         9000
         13.6
3800
                    1700
                              140
                                         25000
4000
         12.8
                   1600
                              140
                                         25000
8200
         8.3
                    2600
                              60
                                         12000
1200
                    400
                              10
                                         16000
         11.4
9100
         11.5
                    3300
                              60
                                         14000
9900
         12.5
                    3400
                              180
                                         18000
9600
         13.7
                    3600
                              390
                                         25000
9600
         9.6
                    3300
                              80
                                         12000
9400
         11.4
                    4000
                              100
                                         13000
;
title3 'Principal Component Analysis';
proc factor data=SocioEconomics simple corr;
run;
```

		Correlat	lons		
	Population	School	Employment	Services	HouseValue
Population	1.00000	0.00975	0.97245	0.43887	0.02241
School	0.00975	1.00000	0.15428	0.69141	0.86307
Employment	0.97245	0.15428	1.00000	0.51472	0.12193
Services	0.43887	0.69141	0.51472	1.00000	0.77765
HouseValue	0.02241	0.86307	0.12193	0.77765	1.00000
	Fi	ve Socioeconor	nic Variables		
	See Page 14 of	Harman: Modern	n Factor Analy	sis, 3rd Ed	
	Pr	incipal Compor	nent Analysis		
		The FACTOR I	Procedure		
	Initial Fa	ctor Method: I	Principal Comp	onents	
	Prior	Communality F	stimatos: ONE		
	FIIO	Communativy Es	scimates. One		
Eig	envalues of the	Correlation M	Matrix: Total	= 5 Average	= 1
	Eigenvalue	Difference	Proportio	on Cumulati	ve
	1 2.87331359	1.07665350	0.574	0.57	47
	2 1.79666009	1.58182321	1 0.359	0.93	40
	3 0.21483689	0.11490283	3 0.043	0.97	70
	4 0.09993405	0.08467868	3 0.020	0.99	69
	5 0.01525537	(0.003	1.00	00

	proc factor dat	a=SocioEco	onomics		
	priors=smc n	priors=smc msa residual			
	rotate=proma	ax reorder			
	outstat=fact	:_all			
	plots=(scree	🛚 initloadi	ings preload	ings loadings)	;
	run;				
	Partial Correlat	ions Contro	olling all ot	cher Variables	
	Population	School	Employment	Services	HouseValue
Population	1.00000	-0.54465	0.97083	0.09612	0.15871
School	-0.54465	1.00000	0.54373	0.04996	0.64717
Employment	0.97083	0.54373	1.00000	0.06689	-0.25572
Services	0.09612	0.04996	0.06689	1.00000	0.59415
HouseValue	0.15871	0.64717	-0.25572	0.59415	1.00000
Kaiser's Measure of Sampling Adequacy: Overall MSA = 0.57536759					
Population	School	Employ	yment	Services I	HouseValue
0 47207897	0 55158839	0 4991	51137 0	80664365	61281377
0.4/20/05/	0.55156655	0.400.	51157 0.	80004305	5.01281577
Prior Communality Estimates: SMC					
Population	School	Employ	yment	Services I	HouseValue
0.96859160	0.82228514	0.9691	18082 0.	78572440	0.84701921

D iana (
Five S	socioeconomic var:	ladies
see Page 14 of Harn	nan: Modern Factor	r Analysis, 3rd Ed
Principal Facto	or Analysis with I	Promax Rotation
Tł	ne FACTOR Procedu:	re
Prerot	ation Method: Va	rimax
Orthogor	al Transformation	n Matrix
	1	2
1	0.78895	0.61446
2	-0.61446	0 78895

Orthogonal Matrix: **PP' = P'P = I**

	Rot	ated Factor Patt	ern	
		Factor1	Factor2	
	HouseValue	0.94072	-0.00004	
	School	0.90419	0.00055	
	Services	0.79085	0.41509	
	Population	0.02255	0.98874	
	Employment	0.14625	0.97499	
Variance Explained by Each Factor Factor1 Factor2 2.3498567 2.1005128				
	Final Communal	ity Estimates: T	btal = 4.450370	
Population	School	Employment	Services	HouseValue
0.97811334	0.81756387	0.97199928	0.79774304	0.88494998

Review - SAS manual

The equation for the common factor model is

$$y_{ij} = x_{i1}b_{1j} + x_{i2}b_{2j} + \dots + x_{iq}b_{qj} + e_{ij}$$

where

<i>Yij</i>	is the value of the <i>i</i> th observation on the <i>j</i> th variable
x _{ik}	is the value of the <i>i</i> th observation on the <i>k</i> th common factor
b _{kj}	is the regression coefficient of the k th common factor for predicting the j th variable
e _{ij}	is the value of the <i>i</i> th observation on the <i>j</i> th unique factor
q	is the number of common factors
14 1	and for a second s

It is assumed, for convenience, that all variables have a mean of 0. In matrix terms, these equations reduce to

 $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E}$

In the preceding equation, X is the matrix of factor scores, and B' is the factor pattern.

When the factors are initially extracted, it is also assumed, for convenience, that the common factors are uncorrelated with each other and have unit variance. In this case, the common factor model implies that the covariance s_{jk} between the *j* th and *k*th variables, $j \neq k$, is given by

$$s_{jk} = b_{1j}b_{1k} + b_{2j}b_{2k} + \dots + b_{qj}b_{qk}$$

or

$$\mathbf{S} = \mathbf{B}'\mathbf{B} + \mathbf{U}^2$$

where S is the covariance matrix of the observed variables, and U^2 is the diagonal covariance matrix of the unique factors.

If the original variables are standardized to unit variance, the preceding formula yields correlations instead of covariances. It is in this sense that common factors explain the correlations among the observed variables. When considering the diagonal elements of standardized \mathbf{S} , the variance of the *j* th variable is expressed as

$$s_{jj} = 1 = b_{1j}^2 + b_{2j}^2 + \dots + b_{qj}^2 + [\mathbf{U}^2]_{jj}$$
 BAC = $\begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$

where $b_{1j}^2 + b_{2j}^2 + \cdots + b_{qj}^2$ and $[U^2]_{jj}$ are the communality and uniqueness, respectively, of the *j* th variable. The communality represents the extent of the overlap with the common factors. In other words, it is the proportion of variance accounted for by the common factors.

EFA

- is a variable reduction technique which identifies the number of latent constructs and the underlying factor structure of a set of variables
- hypothesizes an underlying construct, a variable not measured directly
- estimates factors which influence responses on observed variables
- allows you to describe and identify the number of latent constructs (factors)
- includes unique factors, error due to unreliability in measurement
- traditionally has been used to explore the possible underlying factor structure of a set of measured variables without imposing any preconceived structure on the outcome (Child, 1990).

Goals of factor analysis are

- 1) to help an investigator determine the number of latent constructs underlying a set of items (variables)
- 2) to provide a means of explaining variation among variables (items) using a few newly created variables (factors), e.g., condensing information
- 3) to define the content or meaning of factors, e.g., latent constructs

Assumptions underlying EFA are

- Interval or ratio level of measurement
- Random sampling
- Relationship between observed variables is linear
- A normal distribution (each observed variable)
- A bivariate normal distribution (each pair of observed variables)
- Multivariate normality

Confirmatory VS. Exploratory Differences between CFA and EFA CFA requires specification of a model a priori ٠ the number of factors which items load on each factor a model supported by theory or previous research error explicitly Inductive reasoning 歸納推理: Use the observed data to confirm or define the hypothetical construct as general rule to aid prediction and expectation. X², the discrepancy measure, compared the sample (observed) covariance matrix with the implies model covariance matrix computed from the hypothetical structure and all the identified model parameters

What might be wrong about data mining (a CFA without theory)?

PROC CALIS offers an analysis of linear dependencies in the information matrix (approximate Hessian matrix) that might be helpful in detecting unidentified models. You also can save the information matrix and the approximate covariance matrix of the parameter estimates (inverse of the information matrix), together with parameter estimates, gradient, and approximate standard errors, in an output data set for further analysis.

4.2 CAUSAL EXPLANATIONS

Other marketing researchers are vigorously pursuing the structural equation approach to causal modeling. Originally conceptualized by Bock and Borgman (1966) and later developed by Joreskog (1968, 1973), structural equation modeling (SEM) uses, among others, the maximum likelihood method for estimating parameters. Bagozzi (1980) introduced the approach in marketing and used it to explore for causal relationships between performance and satisfaction among industrial salespeople. Bentler (1990), Bollen (1989), Fornell (1983), Rigdon (1995), and Rigdon and Ferguson (1991), among others, develop the approach. Major advantages of SEM include the ability to control for measurement error, an enhanced ability to test the effects of experimental manipulations, the ability to test complex theoretical structures, the ability to link micro and macro perspectives, and more powerful ways to assess measure reliability and validity (MacKenzie 2001).

In conclusion, the use of the concepts *cause* and *causation* remain and should remain in marketing. Indeed, the search for true causal relationships is central to the mission of marketing science. However, we must never delude ourselves into believing that we can ever know any causal relationship with certainty. Purportedly causal relationships are always only more or less probable, and we should always diligently explore the possibility that the relationships are actually spurious. The very essence of science is that all statements are tentative; all are subject to change and revision on the basis of future evidence.

