Chapter Nineteen

An Applied

Factor Analysis

Review: Multivariate Methods in Marketing

Multivariate Avre some of the variables
methods [ | dependent on others?

Interdependence Are the variables interval
Methods _’ scale or stronger?

Yes

Nonmetric
multidimensional scaling

Factor analysis

Cluster analysis

’ Latent structure analysis

’ Metric multidimensional scaling ‘

2018/11/28



Chapter Outline

1) Overview

2) Basic Concept

3) Factor Analysis Model

4) Statistics Associated with Factor Analysis
5) Conducting Factor Analysis

6) Applications of Common Factor Analysis

7) Summary

Chapter Outline

5) Conducting Factor Analysis
i. Problem Formulation
ii. Construction of the Correlation Matrix
iii. Method of Factor Analysis
iv. Number of of Factors
v. Rotation of Factors
vi. Interpretation of Factors
vii. Factor Scores
viii. Selection of Surrogate Variables
ix. Model Fit

2018/11/28



Factor Analysis

Observed Variables

Factor Analysis

= Factor analysis is a general name denoting a class of

procedures primarily used for data reduction and summarization.

m Factor analysis is an interdependence technique in that an
entire set of interdependent relationships is examined without
making the distinction between dependent and independent
variables.

= Factor analysis is used in the following circumstances:

= To identify underlying dimensions, or factors, that explain
the correlations among a set of variables.

m To identify a new, smaller, set of uncorrelated variables to
replace the original set of correlated variables in subsequent
multivariate analysis (regression or discriminant analysis).

= To identify a smaller set of salient variables from a larger set
for use in subsequent multivariate analysis (canonical
analysis)
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Metropolitan Areas by Winter Index

Average amount of snow (annual)

Average number of times peak wind speeds were > 50 mph (annual)

Average number of days the daily temperature falls to or below freezing
Average number of days where measurable precipitation occurs (winter

Average number of hours that ice occurred per year
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DOES FIRM PERFORMANCE REVEAL ITS OWN
CAUSES? THE ROLE OF BAYESIAN INFERENCE

Y.-E. Tang and F.-M. Liou

Table 1. Principal component analysis of financial indicators and the resulting resource configurations

Financial Resource configuration
indicators
Factorl: Factor2: Factor3:
Relationship Management Knowledge
advantage ability management
Accounts receivable turnover 0.578 —0.085 0.338
CGS/sales —0.677 —0.204 —0.417
Inventory turnover 0.595 0.053 —0.033
Accounts payable turnover 0.684 0.008 0.043
Ré&Dfsales 0.238 0.046 0.859
SG&Afsales —0.063 —0.184 0.812
Depreciation/sales 0.034 0.870 0.014
Tax/sales 0.568 —0.229 —0.379
Fixed assets turnover 0.017 —0.793 0.101
Eigen value 2.36 1.56 1.45
Accumulated variance (%) 0.26 0.43 0.60

Bold numbers indicate a high correlation between the common factor and the corresponding financial indicator (greater than (.5).

The concept of Interdependence
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Linear Dependent

1 2 4 1 300 2 2
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A=l-6 42 24 54 0 42 28 58

21 -21 0 -15 oo 0 0

Interdependence and Multicollinearity

= MATRIX MULTIPLICATION: Let A be an mxn matrix and B be
an nxm matrix, then AB is an mxm matrix

a,,...a b,.. ..b
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Unique solution

= INDEPENDENCE OF VECTORS

Xl X Xm
1_ | % 1 _ |5 m_ | ¥l
H = . H = . H = .
| - o
A H H
Il

If {X;,X,,..., X,y @re independent
then there exists no set of non-
zero Scalars {a;, a,, . . . ,@,r such
thata;x; +ax, +...+aXx, =0

DETERMINANTS

s DETERMINANTS: Finding the determinant of a matrix is a rule for
finding a single valued representation of that matrix.

= 21 83 Then, |A| = a3y, - a3

d a
21 42 2 0 2 9

A=|-6 42 24 54

RULES ABOUT DETERMINANTS
21 -21 0 -15

1. |A] = |A]

2. |AB| = |A|[B]

3. If the rows or columns of A are linearly dependent,
then |A| = 0 and A is said to be singular.
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RANK (Dimensions, constructs, factors)

= RANK OF A MATRIX: Let A be an mxn matrix. The row rank of
A is the largest number of linearly independent rows. If all the
rows of A are linearly independent then A is said to be of full
row rank. Column rank is the largest number of linearly
independent columns.

m if |Aqnm| = 0then r(A) <m

3 0 2 2 20 2 2
A=l-6 42 24 54 R
21 =21 0 -15 0o oo n
Matrix Trace
= Matrix Algebra 70 0
m Scalar: a 2 0
m Vector: a 0 -1
= Matrix: A
TRACE OF A MATRIX
TrA= élaﬁ
tr(I,) =n

tr KA = k tr A, where k is a scalar
tr(AB) = tr(BA)
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Multiple Regression in matrix form

yi = a + Bx; + &
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Matrix Trace (Dimensions, constructs, factors)

- 1] ::,:T 1l
= Scalar: a |t & 4o
= Vector: a - g i U
= Matrix: A o oot

Matrix Algebra |

Transpose matrix: A’

Symmetric Matrix: A = A’
Identity matrix: I

Null matrix: 0

Inverse Matrix: A 1A =1
Orthogonal Matrix: PP’ = P'P = 1
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Matrix Trace (Dimensions, constructs, factors)

= Theorem: Diagonal Reduction of a Matrix

m Consider A,,, r(A) = r. Then there exists an mxm
matrix B and an nxn matrix C, both nonsingular, such

that
mXxm m X n nxn
Observed data Underlie factors

Eigenvaluei i< i& (Dimensions, constructs, factors)

= Eigenvalues

m The purpose of eigenvalues is data reduction. You have
the matrices of correlations (e.g., multicollinearity), and
you want to distill it into something simpler.

= ) is an eigenvalue of A iff there is a honzero vector x
such that Ax = Ax (The matrix A - AI is singular, Det(A-
AI) = 0).

m The set of scalars that make this true are known as
latent roots, eigen values, or characteristic roots.

= In an n-dimensional system, we would have n eigenvalues
with associated eigenvectors.

2018/11/28

10



Matrix Algebra Overview

m Linear dependent

m Determinant

= Rank

m Trace (I,)

= Number of Eigenvalue >1

= For any matrix B, we can always find A
and C, such that

Idempotent Matrix & % s+

M is said to be idempotent if M2=M

the sum of the square products B'B of a square matrix
B can be written as (MB)'MB = B'MB

Using two different matrices B and C » it is possible to
write the deviations from the mean of the sum of
square products (B'C) as follows: (MB)'MC = B'MC.

tr A = rank A if A is idempotent.

- " 4 " " p 1 " p
q - s q 9 S IS q o) p _A
Tk J - (B 1) s ! o T ] (e N T |G
4 - - 4 " - 1 - -
o -3 B3y — =3
1 L 2 i (4 J i L 2

Al= A=
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Review: Multivariate Methods in Marketing

Multivariate Are some of the STP Strategy

methods | dependent on ot Strategic Groups, Org.
configuration and ambidexterity,
smart specification strategy

Positioning Strategy jf”ce L. Arestgflg' irri;z(gzg;::frva'
Perceptual Mapping, MDS
Yes |

Structural holes

@

(Multidimensional Scaling),
Factor analysis

Nonmetric
multidimensional scaling

Cluster analysis
’ Latent structure analysis

’ Metric multidimensional scaling ‘

Factor Analysis Model

Each variable (X) is expressed as a linear combination

of underlying factors (F). The covariation among the variables is
described in terms of a small number of common factors plus a
unique factor for each variable. If the variables are standardized,
the factor model may be represented as:

Xi=hinh+thph+hpf+.. .+, pfy+ VU,
where

/th standardized variable

standardized multiple regression coefficient of
variable /on common factor j

hypothetical, unobservable random variables in
linearly generating each X; (unknown)
standardized regression coefficient of variable 7on
unique factor 7

the unique factor for variable /

number of common factors

X ho»X
e‘-

S
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Factor Analysis

Observed Variables Underlying latent factors

A 11
X5X5
A2y
2 Ay =Factor
Loadings

° }\. 12 FZXZ

Factor Analysis Model

The unique factors are uncorrelated with each other and
with the common factors. The common factors
themselves can be expressed as linear combinations of
the observed variables.

Fi = Wilxl + Wi2X2 + Wi3X3 +...+ Wika

where

FF = estimate of /th factor

W, = weight or factor score coefficient
k = number of variables

2018/11/28
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Factor Analysis Model

m It is possible to select weights or factor score coefficients
so that the first factor explains the largest portion of the
total variance. Stepwise concept in regression

m Then a second set of weights can be selected, so that
the second factor accounts for most of the residual
variance, subject to being uncorrelated with the first
factor.

m This same principle could be applied to selecting
additional weights for the additional factors.

Statistics Associated with Factor Analysis

= Bartlett's test of sphericity. Bartlett's test of sphericity
is a test statistic used to examine the hypothesis that the
variables are uncorrelated in the population. In other
words, the population correlation matrix is an identity
matrix; each variable correlates perfectly with itself (r= 1)
but has no correlation with the other variables (r = 0).

= Correlation matrix. A correlation matrix is a lower
triangle matrix showing the simple correlations, r, between
all possible pairs of variables included in the analysis. The
diagonal elements, which are all 1, are usually omitted.

2018/11/28
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Statistics Associated with Factor Analysis

Communality. Communality is the amount of variance a
variable shares with all the other variables being considered.
This is also the proportion of variance explained by the
common factors.

Eigenvalue. The eigenvalue represents the total variance
explained by each factor.

Factor loadings. Factor loadings are simple correlations
between the variables and the factors.

Factor loading plot. A factor loading plot is a plot of the
original variables using the factor loadings as coordinates.

Factor matrix. A factor matrix contains the factor loadings
of all the variables on all the factors extracted.

Statistics Associated with Factor Analysis

Factor scores. Factor scores are composite scores estimated
for each respondent on the derived factors.

Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy. The Kaiser-Meyer-Olkin (KMO) measure of sampling
adequacy is an index used to examine the appropriateness of
factor analysis. High values (between 0.5 and 1.0) indicate
factor analysis is appropriate. Values below 0.5 imply that factor
analysis may not be appropriate.

Percentage of variance. The percentage of the total variance
attributed to each factor.

Residuals are the differences between the observed
correlations, as given in the input correlation matrix, and the
reproduced correlations, as estimated from the factor matrix.

Scree plot. A scree plot is a plot of the Eigenvalues against the
number of factors in order of extraction.

2018/11/28
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Conducting Factor Analysis

Table 19.1

RESPONDENT
NUMBER Vi v2 V3 v4a V5 Vvé

1 7.00 3.00 6.00 4.00 2.00 4.00

2 1.00 3.00 2.00 4.00 5.00 4.00

3 6.00 2.00 7.00 4.00 1.00 3.00

4 4.00 5.00 4.00 6.00 2.00 5.00

5 1.00 2.00 2.00 3.00 6.00 2.00

6 6.00 3.00 6.00 4.00 2.00 4.00

7 5.00 3.00 6.00 3.00 4.00 3.00

8 6.00 4.00 7.00 4.00 1.00 4.00

9 3.00 4.00 2.00 3.00 6.00 3.00
10 2.00 6.00 2.00 6.00 7.00 6.00
11 6.00 4.00 7.00 3.00 2.00 3.00
12 2.00 3.00 1.00 4.00 5.00 4.00
13 7.00 2.00 6.00 4.00 1.00 3.00
14 4.00 6.00 4.00 5.00 3.00 6.00
15 1.00 3.00 2.00 2.00 6.00 4.00
16 6.00 4.00 6.00 3.00 3.00 4.00
17 5.00 3.00 6.00 3.00 3.00 4.00
18 7.00 3.00 7.00 4.00 1.00 4.00
19 2.00 4.00 3.00 3.00 6.00 3.00
20 3.00 5.00 3.00 6.00 4.00 6.00
21 1.00 3.00 2.00 3.00 5.00 3.00
22 5.00 4.00 5.00 4.00 2.00 4.00
23 2.00 2.00 1.00 5.00 4.00 4.00
24 4.00 6.00 4.00 6.00 4.00 7.00
25 6.00 5.00 4.00 2.00 1.00 4.00
26 3.00 5.00 4.00 6.00 4.00 7.00
27 4.00 4.00 7.00 2.00 2.00 5.00
28 3.00 7.00 2.00 6.00 4.00 3.00
29 4.00 6.00 3.00 7.00 2.00 7.00
30 2.00 3.00 2.00 4.00 7.00 2.00

Conducting Factor Analysis

Fig. 19.2 |

Problem formulation

| Construction of the Correlation Matrix |

|

Method of Factor Analysis |

|

| Determination of Number of Factors |

l

Rotation of Factors

l

Interpretatic;n of Factors

)

Calculation of

Factor Scores

Selection of

Surrogate Variables

|

Determination of Model Fit
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Conducting Factor Analysis

Formulate the Problem

m The objectives of factor analysis should be identified.

m The variables to be included in the factor analysis should
be specified based on past research, theory, and
judgment of the researcher. It is important that the
variables be appropriately measured on an interval or

ratio scale.

= An appropriate sample size should be used. As a rough
guideline, there should be at least four or five times as
many observations (sample size) as there are variables.

Correlation Matrix

Table 19.2
Variables Vi V2 V3 V4 V5 V6
Vi 1.000
V2 -0.530 1.000
V3 0.873| -0.155| 1.000
Va4 -0.086 0.572| -0.248| 1.000
V5 -0.858, 0.020| -0.778| -0.007 | 1.000
V6 0.004| 0.640| -0.018| 0.640| -0.136 1.000
% g;eventlon of cavities V2: shiny teeth
- >trong gum V4: Fresh teeth

V5: prevention of decay
is not important

Vé6:

attractive teeth

2018/11/28
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Conducting Factor Analysis
Construct the Correlation Matrix

m The analytical process is based on a matrix of correlations
between the variables.

m Bartlett's test of sphericity can be used to test the null
hypothesis that the variables are uncorrelated in the
population: in other words, the population correlation
matrix is an identity matrix. If this hypothesis cannot be
rejected, then the appropriateness of factor analysis should
be questioned.

= Another useful statistic is the Kaiser-Meyer-Olkin (KMO)
measure of sampling adequacy. Small values of the KMO
statistic indicate that the correlations between pairs of
variables cannot be explained by other variables and that
factor analysis may not be appropriate.

Conducting Factor Analysis
Determine the Method of Factor Analysis

= In principal components analysis, the total variance in the
data is considered. The diagonal of the correlation matrix
consists of unities, and full variance is brought into the factor
matrix. Principal components analysis is recommended when the
primary concern is to determine the minimum number of factors
that will account for maximum variance in the data for use in
subsequent multivariate analysis. The factors are called principal

components.

= In common factor analysis, the factors are estimated based
only on the common variance. Communalities are inserted in the
diagonal of the correlation matrix. This method is appropriate
when the primary concern is to identify the underlying
dimensions and the common variance is of interest. This method
is also known as principal axis factoring.

2018/11/28
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DOES FIRM PERFORMANCE REVEAL ITS OWN
CAUSES? THE ROLE OF BAYESIAN INFERENCE

Y.-E. Tang and F.-M. Liou

Table 1. Principal component analysis of financial indicators and the resulting resource configurations

Financial Resource configuration
indicators
Factorl: Factor2: Factor3:
Relationship Management Knowledge
advantage ability management
Accounts receivable turnover 0.578 0.338
CGS/sales —0.677 THE —0.417
Inventory turnover — 0.595 AMBIDEXTROUS —0.033
Accounts payable turnover 0.684 nRGANlZMlUN 0.043
R&D/sales e ) 0.238 - 0.859
SG&A/sales HR —0.063 tho Tious Wihile 0.812
Depreciation/sales \./ 0.034 Py . 0.014
Tax/sales ) 0.568 it —0.379
Fixed assets turnover 0.017 JENS MAER 0.101
Eigen value 2.36 1.45
Accumulated variance (%) 0.26 0.60

Bold numbers indicate a high correlation between the common factor and the corresponding financial indicator (greater than (.5).

Results of Principal Components
Analysis

Table 19.3

Communalities

Variables Initial Extraction
vi 1.000 0.926
V2 1.000 0.723
v3 1.000 0.894
v4 1.000 0.739
V5 1.000 0.878
V6 1.000 0.790

Initial Eigen values

Factor Eigen value %o of variance Cumulat. %

1 2,731 45.520 45.520
2 2.218 36.969 82.488
3 0.442 7.360 89.848
4 0.341 5.688 95.536
5 0.183 3.044 98.580
6 0.085 1.420 100.000

2018/11/28
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Results of Principal Components
Analysis

Table 19.3, cont.

Extraction Sums of Squared Loadings

Factor Eigen value % of variance Cumulat. %
1 2.731 45.520 45.520
2 2.218 36.969 82.488

Factor Matrix

Variables Factor 1 Factor 2
Vi 0.928 0.253
V2 -0.301 0.795
V3 0.936 0.131
V4 -0.342 0.789
V5 -0.869 -0.351
V6 -0.177 0.871

Rotation Sums of Squared Loadings

Factor Eigenvalue % of variance Cumulat. %
1 2.688 44.802 44.802
2 2.261 37.687 82.488

Results of Principal Components Analysis

Table 19.3, cont.

Rotated Factor Matrix

Variables Factor 1 Factor 2
vi 0.962 -0.027
V2 -0.057 0.848
V3 0.934 -0.146
v4 -0.098 0.845
V5 -0.933 -0.084
V6 0.083 0.885

Factor Score Coefficient Matrix

Variables Factor 1 Factor 2
vi 0.358 0.011
v2 -0.001 0.375
V3 0.345 -0.043
v4 -0.017 0.377
V5 -0.350 -0.059
V6 0.052 0.395

2018/11/28
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Results of Principal Components Analysis

Table 19.3, cont.

The lower-left triangle contains the reproduced
correlation matrix; the diagonal, the communalities;
the upper-right triangle, the residuals between the
observed correlations and the reproduced (rotated)
correlations.

Factor Score Coefficient Matrix

Variables Vi V2 V3 va V5 V6

V1 0.926| 0.024| -0.029| 0.031| 0.038| -0.053
V2 -0.078| 0.723| 0.022] -0.158| 0.038| -0.105
V3 0.902| -0.177| 0.894| -0.031| 0.081] 0.033
va -0.117| 0.730| -0.217| 0.739] -0.027| -0.107
V5 -0.895| -0.018| -0.859| 0.020| 0.878| 0.016
V6 0.057| 0.746| -0.051| 0.748| -0.152| 0.790

Conducting Factor Analysis
Determine the Number of Factors

= A Priori Determination. Sometimes, because of prior
knowledge, the researcher knows how many factors to expect
and thus can specify the number of factors to be extracted
beforehand.

Determination Based on Eigenvalues. In this approach,
only factors with Eigenvalues greater than 1.0 are retained. An
Eigenvalue represents the amount of variance associated with
the factor. Hence, only factors with a variance greater than 1.0
are included. Factors with variance less than 1.0 are no better
than a single variable, since, due to standardization, each
variable has a variance of 1.0. If the number of variables is less
than 20, this approach will result in a conservative number of
factors.

2018/11/28
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Conducting Factor Analysis
Determine the Number of Factors

= Determination Based on Scree Plot. A scree plot is a
plot of the Eigenvalues against the number of factors in
order of extraction. Experimental evidence indicates that
the point at which the scree begins denotes the true
number of factors. Generally, the number of factors
determined by a scree plot will be one or a few more than
that determined by the Eigenvalue criterion.

= Determination Based on Percentage of Variance.
In this approach the number of factors extracted is
determined so that the cumulative percentage of variance
extracted by the factors reaches a satisfactory level. Itis
recommended that the factors extracted should account
for at least 60% of the variance.

Scree Plot
Fig. 193 54 _

2.5
2.0

1.5

Eigenvalue

1.0

0.5

0.0 | | | | |

1 2 3 4 5 6
Component Number
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Conducting Factor Analysis
Determine the Number of Factors

= Determination Based on Split-Half Reliability.
The sample is split in half and factor analysis is
performed on each half. Only factors with high
correspondence of factor loadings across the two
subsamples are retained.

» Determination Based on Significance Tests. It is
possible to determine the statistical significance of the
separate Eigenvalues and retain only those factors that
are statistically significant. A drawback is that with large
samples (size greater than 200), many factors are likely
to be statistically significant, although from a practical
viewpoint many of these account for only a small
proportion of the total variance.

Conducting Factor Analysis
Rotate Factors

m Although the initial or unrotated factor matrix indicates the
relationship between the factors and individual variables, it
seldom results in factors that can be interpreted, because
the factors are correlated with many variables. Therefore,
through rotation the factor matrix is transformed into a
simpler one that is easier to interpret.

= In rotating the factors, we would like each factor to have
nonzero, or significant, loadings or coefficients for only
some of the variables. Likewise, we would like each
variable to have nonzero or significant loadings with only a
few factors, if possible with only one.

= The rotation is called orthogonal rotation if the axes are
maintained at right angles.

2018/11/28
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Rotation (transformation)

L]

N

Let T be any orthogonal matrix such that B = AT, B B’= AT (AT)’=AN'.

Conducting Factor Analysis Rotate Factors

= The most commonly used method for rotation is the
varimax procedure. This is an orthogonal method of
rotation that minimizes the number of variables with high
loadings on a factor, thereby enhancing the
interpretability of the factors. Orthogonal rotation results
in factors that are uncorrelated. (e.g., big five personality
traits)

= The rotation is called oblique rotation when the axes
are not maintained at right angles, and the factors are
correlated. Sometimes, allowing for correlations among
factors can simplify the factor pattern matrix. Oblique
rotation should be used when factors (constructs) in the
population are likely to be strongly correlated. (e.g., GDP
and population size)

2018/11/28
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Factor Matrix Before and After Rotation

Fig. 19.4

Factors Factors

Variables | 1 2 Variables| 1
1 X 1 X
2 X X 2
3 X 3 X
4 X X 4
5 X X 5 X
6 X 6

(a) (b)

High Loadings High Loadings

Before Rotation After Rotation

Conducting Factor Analysis
Interpret Factors

m A factor can then be interpreted in terms of the
variables that load high on it.

m Another useful aid in interpretation is to plot the
variables, using the factor loadings as coordinates.
Variables at the end of an axis are those that have
high loadings on only that factor, and hence
describe the factor.

2018/11/28
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Factor Loading Plot
. Rotated Component Matrix
Fig. 19.5 Component 2
Component Plot in Component
Rotated Space Variable 1 2
Component 1
1.0 Vi | *V6 Vi 0.962 -2.66E-02
B V2 -5.72E-02 | 0.848
05 v3 0934 |-0.146
0.0 V1 v4 -9.83E-02 | 0.854
*V5 v3* | | vs -0.933 | -8.40E-02
0.5 V6 8.337E-02| 0.885
-1.0
1.0 0.5 0.0 -0.5 -1.0

Conducting Factor Analysis
Calculate Factor Scores

The factor scores for the th factor may be
estimated

as follows:

Fi= Wy Xy + Wi Xo + Wiz Xy + ..o + Wy X

/ /.
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Conducting Factor Analysis
Select Surrogate Variables

= By examining the factor matrix, one could select for
each factor the variable with the highest loading on
that factor. That variable could then be used as a
surrogate variable {{# for the associated factor.

m However, the choice is not as easy if two or more
variables have similarly high loadings. In such a
case, the choice between these variables should be
based on theoretical and measurement
considerations.

Conducting Factor Analysis
Determine the Model Fit

m The correlations between the variables can be
deduced or reproduced from the estimated
correlations between the variables and the factors.

m The differences between the observed correlations
(as given in the input correlation matrix) and the
reproduced correlations (as estimated from the
factor matrix) can be examined to determine
model fit. These differences are called residuals.

2018/11/28
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Results of Common Factor Analysis

Table 19.4

Communalities

Variables Initial Extraction LEM G teSt.Of sphericity

vi 0.859 0.928 | ® Approx. Chi-Square = 111.314
v2 0.480 0562 |eo df =15

v3 0.814 0.836 |, Gignifi -

va 0.543 0.600 S|gn|f|cance 0.(_)0000

V5 0.763 0.789 | ® Kaiser-Meyer-Olkin measure of
V6 0.587 0.723 sampling adequacy = 0.660

Initial Eigenvalues

Factor Eigenvalue % of variance Cumulat. %

1 2.731 45.520
2 2.218 36.969
3 0.442 7.360
4 0.341 5.688
5 0.183 3.044
6 0.085 1.420

45.520
82.488
89.848
95.536
98.580
100.000

Results of Common Factor Analysis

Table 19.4, cont.

Extraction Sums of Squared Loadings

Factor Eigenvalue % of variance Cumulat. %
1 2.570 42.837 42.837
2 1.868 31.126 73.964

Factor Matrix

Variables Factor 1 Factor 2
Vi 0.949 0.168
V2 -0.206 0.720
V3 0.914 0.038
v4 -0.246 0.734
V5 -0.850 -0.259
V6 -0.101 0.844

Rotation Sums of Squared Loadings

Factor Eigenvalue % of variance
1 2,541 42.343
2 1.897 31.621

Cumulat. %
42.343
73.964
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Results of Common Factor Analysis

Table 19.4, cont.

Rotated Factor Matrix

Variables Factor 1  Factor 2
Vi 0.963 -0.030
V2 -0.054 0.747
V3 0.902 -0.150
va4 -0.090 0.769
V5 -0.885 -0.079
V6 0.075 0.847

Factor Score Coefficient Matrix

Variables Factor1 Factor 2
Vi 0.628 0.101
V2 -0.024 0.253
V3 0.217 -0.169
v4 -0.023 0.271
V5 -0.166 -0.059
V6 0.083 0.500

Results of Common Factor Analysis

Table 19.4, cont.

The lower-left triangle contains the reproduced
correlation matrix; the diagonal, the communalities;
the upper-right triangle, the residuals between the

observed correlations and the reproduced correlations.

Factor Score Coefficient Matrix

Variables V1 V2 V3 V4 V5 V6

vi 0.928| 0.022 | -0.000| 0.024 | -0.008 | -0.042
V2 -0.075| 0.562| 0.006|-0.008| 0.031| 0.012
V3 0.873| -0.161| 0.836| -0.005, 0.008| 0.042
v4 -0.110| 0.580 -0.197| 0.600-0.025 | -0.004
V5 -0.850| -0.012 | -0.786| 0.019| 0.789| 0.003
V6 0.046| 0.629 | -0.060| 0.645) -0.133| 0.723
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SAS example: Job Ratings

options validvarname=any;
data jobratinga;
input (’Communication Skills'n
"Problem Solving’'n
"Learning Ability'n
" Judgment Under Pressure’'n
rObservational sSkills'n
'Willingness to Confront Problems’'n
"Interest in People’'n
rInterpersonal Sensitivity'n
'Degire for Self-Improvement'n
"Appearance’'n
'Dependability’n
"Phyaical Ability'n
rIntegrity'n
roverall Rating'n) (1.):
datalines;

26838853879887

74758876857667

56757863775875

67869777988587

proc factor data=jobratings(drop="0verall Rating'n) priors=smc
rotate=varimax;

rum;

The FACTOR Procedurs
Inmitial Factor Method: Principal Factors

Pricr Communality Estimates: SMC

Judgmsnt
Communi cation Problem Learning Under Observaticnal
Skillas Solwing Abiliey Pressuras Skills
0.62981394 0.58657431 0.61009871 0.63766021 0.67187583
Willingness
to Confront Interest Interpersonal Desire for
Problems in People Sensitivity Self-Improvement
0.64779805 0.75641518 ©0.75584891 0.57460176
Phyeical
Appearance Dependability Ability Integrity
0.45505304 0.63449045 0.42245324 0.68195454

Bigenmvaluss of the Reduced Correlation Matrix:

Total = 2.06463816 Average = 0.62035678

Eigenvalue Differsnce Proportion Cumulative
1 6.17760549 4.71531946 0.7660 0.7660
2 1.46228602 0.90183348 0.1813 0.9473
3 0.56045254 0.2B093933 0.0695 1.0168
4 0.27951322 0.04766016 0.0347 1.0515
5 0.23185205 0.16113428 0.0287 1.0802
[ 0.07071877 0.07489624 0.0088 1.0880
7 -.00417747 0.03387533 -0.0005 1.0885
E -.038052789 0.04776534 -0.0047 1.0838
E -.08581814 0.02438060 -0.0106 1.0731
10 -.11019874 0.01452741 -0.0137 1.0585
11 -.12472615 0.02356465 -0.0155 1.0440
12 -.14828080 0.05823605 -0.0184 1.0256
13 - .20652684 -0.0256 1.0000

2 factore will be retained by the PROPORTION criterion.
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X= 0 (Fl+ A F24 0 F3+. .+ Fm

Initial Facteor Method: Primcipal Factors

Factor Pattern

Factorl Factorl Factor3
Communication 8kills 0.75441 0.07707 -0.25551
Problem Solving 0.68550 0.08028 -0.34788
Learning Ability 0.65504 0.34808 -0.25249
Judgment Under Pressure 0.73351 -0.21405 -0.23513
Observational 2killa 0.65039 0.45292 0.10258
Willingness te Confreont Probklems 0.66458 0.47460 0.08210
Interest in People 0.70770 -0.53427 0.10879
Interpersonal Sensitivity 0.64668 -0.51284 -0.07582
Depire for Self-Improvement 0.73820 0.12506 0.09062
Appearance 0.57188 0.20052 0.16387
Dependability 0.79475 -0.04516 0.16400
Physical Ability 0.51285 0.10251 0.34880
Integrity 0.74508 -0.35091 0.18658

The pattern matrix suggests that Factor! represents general ability. All loadings
for Factor1 in the Factor Pattern are at least 0.5. Factor2 consists of high pos-
itive loadings on certain task-related skills (Willingness to Confront Problems,
Observational Skills, and Learning Ability) and high negative loadings on some
mterpersonal skills (Interpersonal Sensitivity, Interest in People, and Integrity).

After Rotate=Varimax

The rotated factor pattern matrix is somewhat simpler to interpret. If a magnitude
of at least 0.5 is required to indicate a salient variable-factor relationship, Factor1
now represents interpersonal skills (Interpersonal Sensitivity, Interest in People,
Integrity. Judgment Under Pressure, and Dependability). Factor2 measures
physical skills and job enthusiasm (Observational Skills, Willingness to Confront
Problems, Physical Ability, Desire for Self-Improvement, Dependability,
and Appearance). Factor3 measures cognitive skills (Communication Skills,
Problem Solving, Learning Ability, and Judgment Under Pressure).

Factorl Factor2 Factor3
Communication 8kills 0.35591 0.32744 0.63530
Problem Solving 0.30802 0.23102 0.87058
Learning Ability 0.08879 0.41149 0.66512
Judgment Under Pressure 0.58287 0.17%01 0.51764
Chbservational Skills 0.05533 0.70488 0.43870
Willingness to Confront Problems 0.02168 0.69391 0.43578
Interest in Pecple 0.85877 0.21422 0.13562
Interpersonal Sensitivity 0.86547 0.02239 0.22200
Depire for Self-Improvement 0.34498 0.55775 0.37242
Appearance 0.1%319 0.54327 0.24814
Dependability 0.52174 0.54981 0.29337
Physical Ability 0.25445 0.57321 0.04165
Integrity 0.74172 0.38033 0.15567
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SCREE PLOT

OQutput 27.2.2. Scree Plot
Principal Factor Analysis with Promax Rotation
Initial Factor Method: Prinecipal Factora

Scres Plot of Eigemvaluss
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Example 33.1: Principal Component Analysis

This example analyzes socioeconomic data provided by Harman (1976). The five variables repre
sent total population, median school years, total employment, miscellaneous professional services
and median house value. Each observation represents one of twelve census tracts in the Los Angeles
Standard Metropolitan Statistical Area.

The first analysis is a principal component analysis. Simple descriptive statistics and correlations
are also displayed. The following statements produce Output 33.1.1:

data SociocEconomics;
title 'Five Socioceconomic WVariables’;
title2 ’'See Page 14 of Harman: Modern Factor Analysis, 3rd Ed’;
input Population School Employment Services HouseValue;

datalines;
5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
2100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000

9400 11.4 4000 100 132000

;

title3 'Principal Component Analysis’;
proc factor data=SocicEconomics simple corr;

run;
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Correlations
Population Scheol Employment Services HouseValue
Population 1.00000 0.00975 0.97245 0.43887 0.02241
School 0.00975 1.00000 0.15428 0.69141 0.86307
Employment 0.97245 0.15428 1.00000 0.51472 0.12193
Services 0.43887 0.69141 0.51472 1.00000 0.77765
HouseValue 0.02241 0.86307 0.12193 0.77765 1.00000
Five Socioceconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed
Principal Component Analysis
The FACTOR Procedure
Initial Factor Method: Principal Components
# Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 5 Average =1
Eigenvalue Difference Proportion Cumulative
1 2.87331359 1.07665350 0.5747 0.5747
2 1.79666009 1.58182321 0.3593 0.9340
3 0.21483689 0.11450283 0.0430 0.9770
4 0.09993405 0.08467868 0.0200 0.9969
5 0.01525537 0.0031 1.0000
proc factor data=SocicEconomics
priors=smc msa residual
rotate=promax reorder
outstat=fact all
plots= (scree initlocadings preloadings loadings) ;
run;
Partial Correlations Controlling all other Variables
Population School Employment Services HouseValue
Population 1.00000 -0.54465 0.97083 0.09612 0.15871
School —0.54465 1.00000 0.54373 0.04996 0.64717
Employment 0.97083 0.54373 1.00000 0.06689 -0.25572
Services 0.09612 0.049%6 0.06689 1.00000 0.59415
HouseValue 0.15871 0.64717 -0.25572 0.59415 1.00000

Kaiser’'s Measure of Sampling Adequacy: Overall MSA = 0.57536759

Population

0.47207897

Population

0.96859160

School Employment Services

0.55158839 0.48851137 0.80664365
Prior Communality Estimates: SMC

School Employment Services

0.82228514 0.96918082 0.78572440

HouseValue

0.61281377

HouseValue

0.84701921
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Output 33.2.2 Scree and Variance Explained Plots

Scree Plot Variance Explained
’ 1.00 @@
0.75
2
: 5
2 i=
% g 050
= 8
(TR 2
0.25
’ I S— 0.00 e
1 2 3 4 5 ) ) 5 )
Factor Eactor

<O Cumulative
—o—— Proportion

Output 33.2.6 Varimax Rotation: Transform Matrix and Rotated Pattern

Five Socioceconomic Variables
See Page 14 of Harman: Modern Facteor Analysis, 3rd Ed
Principal Factor Analysis with Promax Rotatien

The FACTOR Procedure
Prerotation Method: Varimax

Orthogenal Transformation Matrix

1 2
1 0.78895 0.61446
2 —0.61446 0.78895

Orthogonal Matrix: PP’ = P'P =1
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Population

0.97811334

Rotated Factor Pattern

HouseValue
School
Services
Population

Employment

Factorl

0.94072
0.90419
0.79085
0.02255
0.14625

Factor2

-0.00004
0.00055
0.41509
0.98874
0.97499

Variance Explained by Each Factor

Factorl Factor2

2.3498567 2.1005128

Final Communality Estimates: Total = 4.450370

School Employment Services

0.81756387 0.97199928 0.79774304

HouseValue

0.88494998

surrogate variable {3 for the associated factor

Factor 2 (47.2%)

Prerotated Factor Pattern
10 Population
T- A Employment

0.8

0.6

Services

0.4 |

0.2 | e

School

HouseValue

02 00 02 04 06 08
Factor 1 (52.8%)

-1.0 08 -06 -04
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Chapter Twenty-Two

Structural Equation
Modeling and Path
Analysis Marketing Research

AN APPLIED ORIENTATION

Naresh K. Malhotra

LISREL, an acronym for linear structural relations,
is a statistical software package used in structural
equation modeling. (ASIMPLIS, AMOS, EQA,
Mplus, Mx, RAMONA)

Structural equation modeling (SEM), a procedure
for estimating a series of dependence relationships

among a set of concepts or constructs represented by
multiple measured variables and incorporated into an

integrated model.

Path analysis A special case of SEM with only
single indicators for each of the variables in the
causal model. In other words, path analysis is SEM
with a structural model, but no measurement

model.
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Review - SAS manual

The equation for the common factor model is

Yij = X,'lblj‘ + X,'ghzj‘ + et X,'qbqj =+ €jj

where

Yij is the value of the /th observation on the jth variable

Xik is the value of the /th observation on the kth common factor

bkj is the regression coefficient of the kth common factor for predicting the jth variable
e;j is the value of the /th observation on the jth unique factor

q is the number of common factors

It is assumed, for convenience. that all variables have a mean of 0. In matrix terms. these equations
reduce to

Y=XB+E

In the preceding equation, X is the matrix of factor scores, and B’ is the factor pattern.

When the factors are initially extracted. it is also assumed, for convenience, that the common factors
are uncorrelated with each other and have unit variance. In this case, the common factor model
implies that the covariance s ;; between the jth and kth variables, j # k. is given by

Sik = bljblk + b2jh2k + et hqthk
or
S=BB+U?

where 8§ is the covariance matrix of the observed variables, and U? is the diagonal covariance matrix
of the unique factors.

If the original variables are standardized to unit variance, the preceding formula yields correlations
instead of covariances. It is in this sense that common factors explain the correlations among the
observed variables. When considering the diagonal elements of standardized S. the variance of the
Jj th variable is expressed as

1= h2 2 2 127 I 0
sjp=1=bf; +b3; + -+ bg; + U] BAC =| T
00
where bfj + bgj + -t b;j and [llz]jj are the communality and uniqueness, respectively, of the
Jth variable. The communality represents the extent of the overlap with the common factors. In
other words, it is the proportion of variance accounted for by the common factors.
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Exploratory vs. Confirmatory FA
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EFA

* s avariable reduction technique which identifies the number of latent constructs and the underlying factor
structure of a set of variables

*  hypothesizes an underlying construct, a variable not measured directly

v estimates factors which influence responses on observed variables

* allows you to describe and identify the number of latent constructs (factors)

' includes unique factors, error due to unreliability in measurement

* fraditionally has been used to explore the possible underlying factor structure of a set of measured variables
without imposing any preconceived structure on the outcome (Child, 1990).

Goals of factor analysis are
1) to help an investigator determine the number of latent constructs underlying a set of items (variables)
2) to provide a means of explaining variation among variables (items) using a few newly created variables
(factors), e.g., condensing information
3) to define the content or meaning of factors, e.g., latent constructs

Assumptions underlying EFA are
+ Interval or ratio level of measurement
+ Random sampling
+ Relationship between observed variables is linear
+ A normal distribution (each abserved variable)
+ A bivariate normal distribution (each pair of observed variables)
»  Multivariate normality

EFAvs. CFA

CFA assumption: knows exactly which item loads on what factor

Deterministic reasoning

— T T
I (52 5
f\'\ // ‘\\
[\ / \
/ \ / \
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Confirmatory VS. Exploratory

Differences between CFA and EFA
CFA requires specification of
amodel a prior
the number of factors
which items load on each factor
a model supported by theory or previous research
error explicitly

Inductive reasoning B4 HEEE:
Use the observed data to confirm
or define the hypothetical construct
as general rule to aid prediction
and expectation.

X2, the discrepancy measure, compared the sample (observed) covariance matrix
with the implies model covariance matrix computed from the hypothetical structure
and all the identified model parameters

Confirmatory Factor Analysis
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What might be wrong about data mining
(a CFA without theory)?

PROC CALIS offers an analysis of linear dependencies in the information matrix (approximate
Hessian matrix) that might be helpful in detecting unidentified models. You also can save the
information matrix and the approximate covariance matrix of the parameter estimates (inverse of
the information matrix), together with parameter estimates, gradient, and approximate standard
errors, in an output data set for further analysis.

Structure Equation Model
SEM=CFA + PA

Specification
Estimation
Evaluation
Modification
Parameter testing

SAS TCALIS: FACTOR, LINEQS, LISMOD, PATH, and RAM
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4.2 CAUSAL EXPLANATIONS

Other marketing researchers are vigorously pursuing the structural equation approach
to causal modeling. Originally conceptualized by Bock and Borgman (1966) and later
developed by Joreskog (1968, 1973), structural equation modeling (SEM) uses, among
others, the maximum likelihood method for estimating parameters. Bagozzi (1980) intro-
duced the approach in marketing and used it to explore for causal relationships between
performance and satisfaction among industrial salespeople. Bentler (1990), Bollen (1989),
Fornell (1983), Rigdon (1995), and Rigdon and Ferguson (1991), among others, develop
the approach. Major advantages of SEM include the ability to control for measurement
error, an enhanced ability to test the effects of experimental manipulations, the ability to
test complex theoretical structures, the ability to link micro and macro perspectives, and
more powerful ways to assess measure reliability and validity (MacKenzie 2001).

In conclusion, the use of the concepts cause and causation remain and should remain in
marketing. Indeed, the search for true causal relationships is central to the mission of mar-
keting science. However, we must never delude ourselves into believing that we can ever
krnli;)w any causal relationship with certainty. Purportedly causal relationships are always
;)e lgﬁmore_ or less probable, and. we should always diligently explore the possibility that the

9nsh1ps are aCt‘ually spurious. The very essence of science is that all statements are
tentative; all are subject to change and revision on the basis of future evidence.

4 ) MARKETING

THEORY

EXPLANATION: ISSUES
AND ASPECTS

Whenever we propose a solution to a problem we ought to try as hard
as we can to overthrow our solution rather than defend it. Few of us,
unfortunately, practice this precept; but other people, fortunately,
will supply the criticism for us if we fail to supply it ourselves.
—XKarl R. Popper
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Inductive Reasoning 7 4 4& 32
Locke, Berkeley, and Hume (1711-1776)

Logical reasoning: one makes a series of observations and infers
a new claim based on them

CEPEEIFIAREPE > TP 0 E AR o
Psychological reasoning (I-S explanation): one draws inferences
from a limited number of observations to a general rule which will
aid us in prediction and expectation (observations - statistical
inferences = decision rule—> prediction and expectation)

Pk A% >4y Pkt A% <0 (future resemble the past)
Physics: Newton’s Theory of Gravitation

mielcaed | Gew | sy | e e
E r "'\.\i,\—_.
5 /f'/

& o --\-H‘*-\._\:d

SRR iR R B

Keesling-Wiley-Jéreskog LISREL (Linear Structural Relationship) Model (Keesling 1972; Wiley

1972 1072)

St n= Bn + ¥E |nd measurement models:

n=Bp+TE+¢ . y=A,p+e . x=A £+

where 5y and & are vectors of latent variables (factors), and x and y are vectors of manifest variables.
The components of # correspond to endogenous latent variables: the components of § correspond
to exogenous latent variables. The endogenous and exogenous latent variables are connected by
a system of linear equations (the structural model) with coefficient matrices B and I' and an error
vector §. It is assumed that matrix I — B is nonsingular. The random vectors y and x correspond to
manifest variables that are related to the latent variables # and & by two systems of linear equations
(the measurement model} with coefficients A , and Ay and with measurement errors & and §.

C = J-A"TPI-A"HY

00 Ay 0 O,
{00 0 A, . _ Oy
A = 00 B r and P = v
00 0 0 @

with selection matrix J, & = E{£&"}, W = £{{{'},. O3 = £{68"}, and O, = E{ee’}.
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2 2 o (Truism)eht £ 848
How is knowledge acquired or developed?
28 (el B 7 Rihit) C(A+B)=CA+CB

EERELGEALE P AL RS
4
B

BMEF PR S FIUMEE LG R4 o
Survival of the fittest (i 4 2 Ff)

widow of the late Mr. Smith (= #x & % #75L 2 i 4
ke 5 %(RBV) : VRIN principle (valuable, rare,
inimitable, and non-substitutable)

CFA: two constructs are correlated, therefore the path
coefficient (loading) is significant.

Determinism and Tautology

Immanuel Kant (5Z{%): to a great extent we impose our structures
on the world, in particular the world is Euclidean because this is
the way we organize spatial positions.

Determinism in Newton’s theory (Einstein’s Theory of Relativity)
Irrational problem in scientific thinking

Tautology in strategic management: Porter’s generic strategy and
resource-based view (a(b+c) =ab + ac)

Tautology in marketing: confirmation study in PLC, TAM, AIDA,
and hierarchical models (did not generate any new knowledge)

EaTE iy E
R R R
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