SAS/STAT 9.2 User's Guide The FACTOR Procedure (Book Excerpt)

This document is an individual chapter from SAS/STAT ${ }^{\circledR} 9.2$ User's Guide.
The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2008. SAS/STAT ${ }^{\circledR} 9.2$ User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2008, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.
For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
2nd electronic book, February 2009
SAS ${ }^{\circledR}$ Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS ${ }^{\circledR}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. \circledR^{\circledR} indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 33

The FACTOR Procedure

Contents

Overview: FACTOR Procedure 1534
Background 1534
Outline of Use 1537
Getting Started: FACTOR Procedure 1542
Syntax: FACTOR Procedure 1548
PROC FACTOR Statement 1548
BY Statement 1564
FREQ Statement 1564
PARTIAL Statement 1565
PRIORS Statement 1565
VAR Statement 1565
WEIGHT Statement 1566
Details: FACTOR Procedure 1566
Input Data Set 1566
Output Data Sets 1568
Confidence Intervals and the Salience of Factor Loadings 1571
Simplicity Functions for Rotations 1572
Missing Values 1573
Cautions 1574
Factor Scores 1574
Variable Weights and Variance Explained 1575
Heywood Cases and Other Anomalies about Communality Estimates 1576
Time Requirements 1578
Displayed Output 1579
ODS Table Names 1583
ODS Graphics 1585
Examples: FACTOR Procedure 1586
Example 33.1: Principal Component Analysis 1586
Example 33.2: Principal Factor Analysis 1588
Example 33.3: Maximum Likelihood Factor Analysis 1604
Example 33.4: Using Confidence Intervals to Locate Salient Factor Loadings 1612
References 1617

Overview: FACTOR Procedure

The FACTOR procedure performs a variety of common factor and component analyses and rotations. Input can be multivariate data, a correlation matrix, a covariance matrix, a factor pattern, or a matrix of scoring coefficients. The procedure can factor either the correlation or covariance matrix, and you can save most results in an output data set.

PROC FACTOR can process output from other procedures. For example, it can rotate the canonical coefficients from multivariate analyses in the GLM procedure.

The methods for factor extraction are principal component analysis, principal factor analysis, iterated principal factor analysis, unweighted least squares factor analysis, maximum likelihood (canonical) factor analysis, alpha factor analysis, image component analysis, and Harris component analysis. A variety of methods for prior communality estimation is also available.

Specific methods for orthogonal rotation are varimax, quartimax, biquartimax, equamax, parsimax, and factor parsimax. Oblique versions of these methods are also available. In addition, quartimin, biquartimin, and covarimin methods for (direct) oblique rotation are available. General methods for orthogonal rotation are orthomax with user-specified gamma, Crawford-Ferguson family with userspecified weights on variable parsimony and factor parsimony, and generalized Crawford-Ferguson family with user-specified weights. General methods for oblique rotation are direct oblimin with user-specified tau, Crawford-Ferguson family with user-specified weights on variable parsimony and factor parsimony, generalized Crawford-Ferguson family with user-specified weights, promax with user-specified exponent, Harris-Kaiser case II with user-specified exponent, and Procrustes with a user-specified target pattern.

Output includes means, standard deviations, correlations, Kaiser's measure of sampling adequacy, eigenvalues, a scree plot, eigenvectors, prior and final communality estimates, the unrotated factor pattern, residual and partial correlations, the rotated primary factor pattern, the primary factor structure, interfactor correlations, the reference structure, reference axis correlations, the variance explained by each factor both ignoring and eliminating other factors, plots of both rotated and unrotated factors, squared multiple correlation of each factor with the variables, standard error estimates, confidence limits, coverage displays, and scoring coefficients.

The FACTOR procedure now uses ODS Graphics to create graphs as part of its output. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS."

Any topics that are not given explicit references are discussed in Mulaik (1972) or Harman (1976).

Background

See Chapter 69, "The PRINCOMP Procedure," for a discussion of principal component analysis. See Chapter 25, "The CALIS Procedure," for a discussion of confirmatory factor analysis.

Common factor analysis was invented by Spearman (1904). Kim and Mueller (1978a, 1978b) provide a very elementary discussion of the common factor model. Gorsuch (1974) presents a broad
survey of factor analysis, and Gorsuch (1974) and Cattell (1978) are useful as guides to practical research methodology. Harman (1976) gives a lucid discussion of many of the more technical aspects of factor analysis, especially oblique rotation. Morrison (1976) and Mardia, Kent, and Bibby (1979) provide excellent statistical treatments of common factor analysis. Mulaik (1972) provides the most thorough and authoritative general reference on factor analysis and is highly recommended to anyone familiar with matrix algebra. Stewart (1981) gives a nontechnical presentation of some issues to consider when deciding whether or not a factor analysis might be appropriate.

A frequent source of confusion in the field of factor analysis is the term factor. It sometimes refers to a hypothetical, unobservable variable, as in the phrase common factor. In this sense, factor analysis must be distinguished from component analysis since a component is an observable linear combination. Factor is also used in the sense of matrix factor, in that one matrix is a factor of a second matrix if the first matrix multiplied by its transpose equals the second matrix. In this sense, factor analysis refers to all methods of data analysis that use matrix factors, including component analysis and common factor analysis.

A common factor is an unobservable, hypothetical variable that contributes to the variance of at least two of the observed variables. The unqualified term "factor" often refers to a common factor. A unique factor is an unobservable, hypothetical variable that contributes to the variance of only one of the observed variables. The model for common factor analysis posits one unique factor for each observed variable.

The equation for the common factor model is

$$
y_{i j}=x_{i 1} b_{1 j}+x_{i 2} b_{2 j}+\cdots+x_{i q} b_{q j}+e_{i j}
$$

where
$y_{i j} \quad$ is the value of the i th observation on the j th variable
$x_{i k} \quad$ is the value of the i th observation on the k th common factor
$b_{k j} \quad$ is the regression coefficient of the k th common factor for predicting the j th variable
$e_{i j} \quad$ is the value of the i th observation on the j th unique factor
$q \quad$ is the number of common factors
It is assumed, for convenience, that all variables have a mean of 0 . In matrix terms, these equations reduce to

$$
\mathbf{Y}=\mathbf{X B}+\mathbf{E}
$$

In the preceding equation, \mathbf{X} is the matrix of factor scores, and \mathbf{B}^{\prime} is the factor pattern.
There are two critical assumptions:

- The unique factors are uncorrelated with each other.
- The unique factors are uncorrelated with the common factors.

In principal component analysis, the residuals are generally correlated with each other. In common factor analysis, the unique factors play the role of residuals and are defined to be uncorrelated both
with each other and with the common factors. Each common factor is assumed to contribute to at least two variables; otherwise, it would be a unique factor.

When the factors are initially extracted, it is also assumed, for convenience, that the common factors are uncorrelated with each other and have unit variance. In this case, the common factor model implies that the covariance $s_{j k}$ between the j th and k th variables, $j \neq k$, is given by

$$
s_{j k}=b_{1 j} b_{1 k}+b_{2 j} b_{2 k}+\cdots+b_{q j} b_{q k}
$$

or

$$
\mathbf{S}=\mathbf{B}^{\prime} \mathbf{B}+\mathbf{U}^{2}
$$

where \mathbf{S} is the covariance matrix of the observed variables, and \mathbf{U}^{2} is the diagonal covariance matrix of the unique factors.

If the original variables are standardized to unit variance, the preceding formula yields correlations instead of covariances. It is in this sense that common factors explain the correlations among the observed variables. When considering the diagonal elements of standardized \mathbf{S}, the variance of the j th variable is expressed as

$$
s_{j j}=1=b_{1 j}^{2}+b_{2 j}^{2}+\cdots+b_{q j}^{2}+\left[\mathbf{U}^{2}\right]_{j j}
$$

where $b_{1 j}^{2}+b_{2 j}^{2}+\cdots+b_{q j}^{2}$ and $\left[\mathbf{U}^{2}\right]_{j j}$ are the communality and uniqueness, respectively, of the j th variable. The communality represents the extent of the overlap with the common factors. In other words, it is the proportion of variance accounted for by the common factors.

The difference between the correlation predicted by the common factor model and the actual correlation is the residual correlation. A good way to assess the goodness of fit of the common factor model is to examine the residual correlations.

The common factor model implies that the partial correlations among the variables, removing the effects of the common factors, must all be zero. When the common factors are removed, only unique factors, which are by definition uncorrelated, remain.

The assumptions of common factor analysis imply that the common factors are, in general, not linear combinations of the observed variables. In fact, even if the data contain measurements on the entire population of observations, you cannot compute the scores of the observations on the common factors. Although the common factor scores cannot be computed directly, they can be estimated in a variety of ways.

The problem of factor score indeterminacy has led several factor analysts to propose methods yielding components that can be considered approximations to common factors. Since these components are defined as linear combinations, they are computable. The methods include Harris component analysis and image component analysis. The advantage of producing determinate component scores is offset by the fact that, even if the data fit the common factor model perfectly, component methods do not generally recover the correct factor solution. You should not use any type of component analysis if you really want a common factor analysis (Dziuban and Harris 1973; Lee and Comrey 1979).

After the factors are estimated, it is necessary to interpret them. Interpretation usually means assigning to each common factor a name that reflects the salience of the factor in predicting each of the observed variables-that is, the coefficients in the pattern matrix corresponding to the factor. Factor interpretation is a subjective process. It can sometimes be made less subjective by rotating the common factors-that is, by applying a nonsingular linear transformation. A rotated pattern matrix in which all the coefficients are close to 0 or ± 1 is easier to interpret than a pattern with many intermediate elements. Therefore, most rotation methods attempt to optimize a simplicity function of the rotated pattern matrix that measures, in some sense, how close the elements are to 0 or ± 1. Because the loading estimates are subject to sampling variability, it is useful to obtain the standard error estimates for the loadings for assessing the uncertainty due to random sampling. Notice that the salience of a factor loading refers to the magnitude of the loading, while statistical significance refers to the statistical evidence against a particular hypothetical value. A loading significantly different from 0 does not automatically mean it must be salient. For example, if salience is defined as a magnitude larger than 0.4 while the entire 95% confidence interval for a loading lies between 0.1 and 0.3 , the loading is statistically significant larger than 0 but it is not salient. Under the maximum likelihood method, you can obtain standard errors and confidence intervals for judging the salience of factor loadings.

After the initial factor extraction, the common factors are uncorrelated with each other. If the factors are rotated by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated by an oblique transformation, the rotated factors become correlated. Oblique rotations often produce more useful patterns than do orthogonal rotations. However, a consequence of correlated factors is that there is no single unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique rotations, the pattern matrix does not provide all the necessary information for interpreting the factors; you must also examine the factor structure and the reference structure.

Rotating a set of factors does not change the statistical explanatory power of the factors. You cannot say that any rotation is better than any other rotation from a statistical point of view; all rotations, orthogonal or oblique, are equally good statistically. Therefore, the choice among different rotations must be based on nonstatistical grounds. For most applications, the preferred rotation is that which is most easily interpretable, or most compatible with substantive theories.

If two rotations give rise to different interpretations, those two interpretations must not be regarded as conflicting. Rather, they are two different ways of looking at the same thing, two different points of view in the common-factor space. Any conclusion that depends on one and only one rotation being correct is invalid.

Outline of Use

Principal Component Analysis

One important type of analysis performed by the FACTOR procedure is principal component analysis. The following statements result in a principal component analysis:

```
proc factor;
run;
```

The output includes all the eigenvalues and the pattern matrix for eigenvalues greater than one.
Most applications require additional output. For example, you might want to compute principal component scores for use in subsequent analyses or obtain a graphical aid to help decide how many components to keep. You can save the results of the analysis in a permanent SAS data library by using the OUTSTAT= option. (Refer to the SAS Language Reference: Dictionary for more information about permanent SAS data libraries and librefs.) Assuming that your SAS data library has the libref save and that the data are in a SAS data set called raw, you could do a principal component analysis as follows:

```
proc factor data=raw method=principal scree mineigen=0 score
    outstat=save.fact_all;
run;
```

The SCREE option produces a plot of the eigenvalues that is helpful in deciding how many components to use. Alternative, you can use the PLOTS=SCREE option to produce high-quality scree plots. The MINEIGEN $=0$ option causes all components with variance greater than zero to be retained. The SCORE option requests that scoring coefficients be computed. The OUTSTAT= option saves the results in a specially structured SAS data set. The name of the data set, in this case fact_all, is arbitrary. To compute principal component scores, use the SCORE procedure:

```
proc score data=raw score=save.fact_all out=save.scores;
run;
```

The SCORE procedure uses the data and the scoring coefficients that are saved in save.fact_all to compute principal component scores. The component scores are placed in variables named Factor1, Factor2, ..., Factorn and are saved in the data set save.scores. If you know ahead of time how many principal components you want to use, you can obtain the scores directly from PROC FACTOR by specifying the NFACTORS $=$ and OUT= options. To get scores from three principal components, specify the following:

```
proc factor data=raw method=principal
    nfactors=3 out=save.scores;
run;
```

To plot the scores for the first three components, use the PLOT procedure:

```
proc plot;
    plot factor2*factor1 factor3*factor1 factor3*factor2;
run;
```


Principal Factor Analysis

The simplest and computationally most efficient method of common factor analysis is principal factor analysis, which is obtained in the same way as principal component analysis except for the use of the PRIORS= option. The usual form of the initial analysis is as follows:

```
proc factor data=raw method=principal scree
    mineigen=0 priors=smc outstat=save.fact_all;
run;
```

The squared multiple correlations (SMC) of each variable with all the other variables are used as the prior communality estimates. If your correlation matrix is singular, you should specify PRIORS=MAX instead of PRIORS=SMC. The SCREE and MINEIGEN= options serve the same
purpose as in the preceding principal component analysis. Saving the results with the OUTSTAT= option enables you to examine the eigenvalues and scree plot before deciding how many factors to rotate and to try several different rotations without reextracting the factors. The OUTSTAT= data set is automatically marked TYPE=FACTOR, so the FACTOR procedure realizes that it contains statistics from a previous analysis instead of raw data.

After looking at the eigenvalues to estimate the number of factors, you can try some rotations. Two and three factors can be rotated with the following statements:

```
proc factor data=save.fact_all method=principal n=2
    rotate=promax reorder score outstat=save.fact_2;
proc factor data=save.fact_all method=principal n=3
    rotate=promax reorder score outstat=save.fact_3;
run;
```

The output data set from the previous run is used as input for these analyses. The options $\mathrm{N}=2$ and $\mathrm{N}=3$ specify the number of factors to be rotated. The specification ROTATE=PROMAX requests a promax rotation, which has the advantage of providing both orthogonal and oblique rotations with only one invocation of PROC FACTOR. The REORDER option causes the variables to be reordered in the output so that variables associated with the same factor appear next to each other.

You can now compute and plot factor scores for the two-factor promax-rotated solution as follows:

```
proc score data=raw score=save.fact_2 out=save.scores;
proc plot;
    plot factor2*factor1;
run;
```


Maximum Likelihood Factor Analysis

Although principal factor analysis is perhaps the most commonly used method of common factor analysis, most statisticians prefer maximum likelihood (ML) factor analysis (Lawley and Maxwell 1971). The ML method of estimation has desirable asymptotic properties (Bickel and Doksum 1977) and produces better estimates than principal factor analysis in large samples. You can test hypotheses about the number of common factors by using the ML method. You can also obtain standard error and confidence interval estimates for many classes of rotated or unrotated factor loadings, factor correlations, and structure loadings under the ML theory.

The unrotated ML solution is equivalent to Rao's (1955) canonical factor solution and Howe's solution maximizing the determinant of the partial correlation matrix (Morrison 1976). Thus, as a descriptive method, ML factor analysis does not require a multivariate normal distribution. The validity of Bartlett's χ^{2} test for the number of factors does require approximate normality plus additional regularity conditions that are usually satisfied in practice (Geweke and Singleton 1980).

Lawley and Maxwell (1971) derive the standard error formulas for unrotated loadings, while Archer and Jennrich (1973) and Jennrich $(1973,1974)$ derive the standard error formulas for several classes of rotated solutions. Extended results appear in Browne et al. (2004), Hayashi and Yung (1999), and Yung and Hayashi (2001). A combination of these methods is used in PROC FACTOR to compute standard errors in an efficient manner. Confidence intervals are computed by using the asymptotic normality of the estimates. To ensure that the confidence intervals fall within the admissible parameter range, transformation methods due to Browne (1982) are used. The validity of the standard
error estimates and confidence limits requires the assumptions of multivariate normality and a fixed number of factors.

The ML method is more computationally demanding than principal factor analysis for two reasons. First, the communalities are estimated iteratively, and each iteration takes about as much computer time as principal factor analysis. The number of iterations typically ranges from about five to twenty. Second, if you want to extract different numbers of factors, as is often the case, you must run the FACTOR procedure once for each number of factors. Therefore, an ML analysis can take 100 times as long as a principal factor analysis. This does not include the time for computing standard error estimates, which is even more computationally demanding. For analyses with fewer than 35 variables, the computing time for the ML method, including the computation of standard errors, usually ranges from a few seconds to well under a minute. This seems to be a reasonable performance.

You can use principal factor analysis to get a rough idea of the number of factors before doing an ML analysis. If you think that there are between one and three factors, you can use the following statements for the ML analysis:

```
proc factor data=raw method=ml n=1
    outstat=save.fact1;
run;
proc factor data=raw method=ml n=2 rotate=promax
    outstat=save.fact2;
run;
proc factor data=raw method=ml n=3 rotate=promax
    outstat=save.fact3;
run;
```

The output data sets can be used for trying different rotations, computing scoring coefficients, or restarting the procedure in case it does not converge within the allotted number of iterations.

If you can determine how many factors should be retained before an analysis, as in the following statements, you can get the standard errors and confidence limits to aid interpretations for the ML analysis:

```
proc factor data=raw method=ml n=3 rotate=quartimin se
    cover=.4;
run;
```

In this analysis, you specify the quartimin rotation in the ROTATE= option. The SE option requests the computation of standard error estimates. In the COVER= option, you require absolute values of 0.4 or greater in order for loadings to be salient. In the output of coverage display, loadings that are salient would have their entire confidence intervals spanning beyond the 0.4 mark (or the -0.4 mark in the opposite direction). Only those salient loadings should be used for interpreting the factors. See the section "Confidence Intervals and the Salience of Factor Loadings" on page 1571 for more details.

The ML method cannot be used with a singular correlation matrix, and it is especially prone to Heywood cases. See the section "Heywood Cases and Other Anomalies about Communality Estimates" on page 1576 for a discussion of Heywood cases. If you have problems with ML, the best alternative is to use the METHOD=ULS option for unweighted least squares factor analysis.

Factor Rotation

After the initial factor extraction, the factors are uncorrelated with each other. If the factors are rotated by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated by an oblique transformation, the rotated factors become correlated. Oblique rotations often produce more useful patterns than orthogonal rotations do. However, a consequence of correlated factors is that there is no single unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique rotations, the pattern matrix does not provide all the necessary information for interpreting the factors; you must also examine the factor structure and the reference structure.

Nowadays, most rotations are done analytically. There are many choices for orthogonal and oblique rotations. An excellent summary of a wide class of analytic rotations is in Crawford and Ferguson (1970). The Crawford-Ferguson family of orthogonal rotations includes the orthomax rotation as a subclass and the popular varimax rotation as a special case. To illustrate these relationships, the following four specifications for orthogonal rotations with different ROTATE= options will give the same results for a data set with nine observed variables:

```
/* Orthogonal Crawford-Ferguson Family with
variable parsimony weight = nvar - 1 = 8, and
factor parsimony weight = 1 */
proc factor data=raw n=3 rotate=orthcf(8,1);
run;
```

 /* Orthomax without the GAMMA= option */
 proc factor data=raw $n=3$ rotate=orthomax(1);
run;
/* Orthomax with the GAMMA= option */
proc factor data=raw $n=3$ rotate=orthomax gamma=1;
run;
/* Varimax */
proc factor data=raw n=3 rotate=varimax;
run;

You can also get the oblique versions of the varimax in two equivalent ways:

```
/* Oblique Crawford-Ferguson Family with
        variable parsimony weight = nvar - 1 = 8, and
        factor parsimony weight = 1; */
proc factor data=raw n=3 rotate=oblicf(8,1);
```

run;
/* Oblique Varimax */
proc factor data=raw n=3 rotate=obvarimax;
run;

Jennrich (1973) proposes a generalized Crawford-Ferguson family that includes the CrawfordFerguson family and the (direct) oblimin family (refer to Harman 1976) as subclasses. The betterknown quartimin rotation is a special case of the oblimin class, and hence a special case of the generalized Crawford-Ferguson family. For example, the following four specifications of oblique rotations are equivalent:

```
    /* Oblique generalized Crawford-Ferguson Family
    with weights 0, 1, 0, -1 */
proc factor data=raw n=3 rotate=obligencf(0,1,0,-1);
run;
    /* Oblimin family without the TAU= option */
proc factor data=raw n=3 rotate=oblimin(0);
run;
    /* Oblimin family with the TAU= option */
proc factor data=raw n=3 rotate=oblimin tau=0;
run;
    /* Quartimin */
proc factor data=raw n=3 rotate=quartimin;
run;
```

In addition to the generalized Crawford-Ferguson family, the available oblique rotation methods in PROC FACTOR include Harris-Kaiser, promax, and Procrustes. See the section "Simplicity Functions for Rotations" on page 1572 for details about the definitions of various rotations. Refer to Harman (1976) and Mulaik (1972) for further information.

Getting Started: FACTOR Procedure

The following example demonstrates how you can use the FACTOR procedure to perform common factor analysis and factor rotation.

In this example, 103 police officers were rated by their supervisors on 14 scales (variables). You conduct a common factor analysis on these variables to see what latent factors are operating behind these ratings. The overall rating variable is excluded from the factor analysis.

The following DATA step creates the SAS data set jobratings:

```
options validvarname=any;
data jobratings;
    input ('Communication Skills'n
            'Problem Solving'n
            ' Learning Ability'n
            'Judgment Under Pressure'n
            'Observational Skills'n
            'Willingness to Confront Problems'n
            'Interest in People'n
            'Interpersonal Sensitivity'n
            'Desire for Self-Improvement'n
            'Appearance'n
            'Dependability'n
            'Physical Ability'n
            'Integrity'n
            'Overall Rating'n) (1.);
    datalines;
26838853879867
74758876857667
56757863775875
67869777988997
99997798878888
89897899888799
89999889899798
... more lines ...
99899899899899
76656399567486
;
```

The following statements invoke the FACTOR procedure:

```
proc factor data=jobratings(drop='Overall Rating'n) priors=smc
    rotate=varimax;
run;
```

The DATA= option in PROC FACTOR specifies the SAS data set jobratings as the input data set. The DROP = option drops the Overall Rating variable from the analysis. To conduct a common factor analysis, you need to set the prior communality estimate to less than one for each variable. Otherwise, the factor solution would simply be a recast of the principal components solution, in which "factors" are linear combinations of observed variables. However, in the common factor model you always assume that observed variables are functions of underlying factors. In this example, the PRIORS= option specifies that the squared multiple correlations (SMC) of each variable with all the other variables are used as the prior communality estimates. Note that squared multiple correlations are usually less than one. By default, the principal factor extraction is used if the METHOD= option is not specified. To facilitate interpretations, the ROTATE= option specifies the VARIMAX orthogonal factor rotation to be used.

The output from the factor analysis is displayed in Figure 33.1 through Figure 33.5.

As displayed in Figure 33.1, the prior communality estimates are set to the squared multiple correlations. Figure 33.1 also displays the table of eigenvalues (the variances of the principal factors) of the reduced correlation matrix. Each row of the table pertains to a single eigenvalue. Following the column of eigenvalues are three measures of each eigenvalue's relative size and importance. The first of these displays the difference between the eigenvalue and its successor. The last two columns display the individual and cumulative proportions that the corresponding factor contributes to the total variation. The last line displayed in Figure 33.1 states that three factors are retained, as determined by the PROPORTION criterion.

Figure 33.1 Table of Eigenvalues from PROC FACTOR

Figure 33.2 displays the initial factor pattern matrix. The factor pattern matrix represents standardized regression coefficients for predicting the variables by using the extracted factors. Because the initial factors are uncorrelated, the pattern matrix is also equal to the correlations between variables and the common factors.

Figure 33.2 Factor Pattern Matrix from PROC FACTOR

	Factor Pattern		
	Factor1	Factor2	Factor3
Communication Skills			
Problem Solving	0.75441	0.07707	-0.25551
Learning Ability	0.68590	0.08026	-0.34788
Judgment Under Pressure	0.65904	0.34808	-0.25249
Observational Skills	0.73391	-0.21405	-0.23513
Willingness to Confront Problems	0.69039	0.45292	0.10298
Interest in People	0.66458	0.47460	0.09210
Interpersonal Sensitivity	0.70770	-0.53427	0.10979
Desire for Self-Improvement	0.64668	-0.61284	-0.07582
Appearance	0.73820	0.12506	0.09062
Dependability	0.57188	0.20052	0.16367
Physical Ability	0.79475	-0.04516	0.16400
Integrity	0.51285	0.10251	0.34860
	0.74906	-0.35091	0.18656

The pattern matrix suggests that Factor1 represents general ability. All loadings for Factor1 in the Factor Pattern are at least 0.5 . Factor2 consists of high positive loadings on certain task-related skills (Willingness to Confront Problems, Observational Skills, and Learning Ability) and high negative loadings on some interpersonal skills (Interpersonal Sensitivity, Interest in People, and Integrity). This factor measures individuals' relative strength in these skills. Theoretically, individuals with high positive scores on this factor would exhibit better task-related skills than interpersonal skills. Individuals with high negative scores would exhibit better interpersonal skills than task-related skills. Individuals with scores near zero would have those skills balanced. Factor3 does not have a cluster of very high or very low factor loadings. Therefore, interpreting this factor is difficult.

Figure 33.3 displays the proportion of variance explained by each factor and the final communality estimates, including the total communality. The final communality estimates are the proportion of variance of the variables accounted for by the common factors. When the factors are orthogonal, the final communalities are calculated by taking the sum of squares of each row of the factor pattern matrix.

Figure 33.3 Variance Explained and Final Communality Estimates

Variance Explained by Each Factor		
Factor1	Factor2	Factor3
6.1776055	1.4622860	0.5604525

Figure 33.3 continued

Final Communality Estimates: Total $=8.200344$				
Judgment				
Communication	Problem	Learning	Under	Obse
Skills	Solving	Ability	Pressure	
0.64036292	0.59791844	0.61924167	0.63972863	
Willingness				
to Confront	Inter	Interpe		ire
Problems	in Peo	Sensi	Ey Self	rovem
0.67538695	0.79833	0.79		56879
Physical				
Appearance	Depen	lity	lity	rity
0.39403630		69070	48050	3222

Figure 33.4 displays the results of the VARIMAX rotation of the three extracted factors and the corresponding orthogonal transformation matrix. The rotated factor pattern matrix is calculated by postmultiplying the original factor pattern matrix (Figure 33.4) by the transformation matrix.

Figure 33.4 Transformation Matrix and Rotated Factor Pattern

The rotated factor pattern matrix is somewhat simpler to interpret. If a magnitude of at least 0.5 is required to indicate a salient variable-factor relationship, Factor1 now represents interpersonal skills (Interpersonal Sensitivity, Interest in People, Integrity, Judgment Under Pressure, and Dependability). Factor2 measures physical skills and job enthusiasm (Observational Skills, Willingness to Confront Problems, Physical Ability, Desire for Self-Improvement, Dependability, and Appearance). Factor3 measures cognitive skills (Communication Skills, Problem Solving, Learning Ability, and Judgment Under Pressure).

However, using 0.5 for determining a salient variable-factor relationship does not take sampling variability into account. If the underlying assumptions for the maximum likelihood estimation are approximately satisfied, you can output standard error estimates and the confidence intervals with METHOD=ML. You can then determine the salience of the variable-factor relationship by using the coverage displays. See the section "Confidence Intervals and the Salience of Factor Loadings" on page 1571 for more details.

Figure 33.5 displays the variance explained by each factor and the final communality estimates after the orthogonal rotation. Even though the variances explained by the rotated factors are different from that of the unrotated factor (compare with Figure 33.3), the cumulative variance explained by the common factors remains the same. Note also that the final communalities for variables, as well as the total communality, remain unchanged after rotation. Although rotating a factor solution will not increase or decrease the statistical quality of the factor model, it can simplify the interpretations of the factors and redistribute the variance explained by the factors.

Figure 33.5 Variance Explained and Final Communality Estimates after Rotation

Syntax: FACTOR Procedure

You can specify the following statements with the FACTOR procedure:

```
PROC FACTOR < options> ;
    VAR variables;
    PRIORS communalities;
    PARTIAL variables;
    FREQ variable;
    WEIGHT variable;
    BY variables;
```

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. The descriptions of the BY, FREQ, PARTIAL, PRIORS, VAR, and WEIGHT statements follow the description of the PROC FACTOR statement in alphabetical order.

PROC FACTOR Statement

PROC FACTOR < options > ;
The options available with the PROC FACTOR statement are listed in the following table and then described in alphabetical order.

Table 33.1 Options Available in the PROC FACTOR Statement

Option	Description
Data Set Options	
DATA=	specifies input SAS data set
OUT=	specifies output SAS data set
OUTSTAT=	specifies output data set containing statistical results
TARGET=	specifies input data set containing the target pattern for rotation
Factor Extraction and Communalities	
HEYWOOD	sets to 1 any communality greater than 1
METHOD=	specifies the estimation method
PRIORS $=$	specifies the method for computing prior communality estimates
RANDOM= ULTRAHEYWOOD	specifies the seed for pseudo-random number generation allows communalities to exceed 1
Number of Factors	
MINEIGEN=	specifies the smallest eigenvalue for retaining a factor
NFACTORS=	specifies the number of factors to retain

Table 33.1 continued

Option	Description
PROPORTION=	specifies the proportion of common variance in extracted factors
Data Analysis Options	
$\begin{aligned} & \text { ALPHA= } \\ & \text { COVARIANCE } \\ & \text { COVER= } \end{aligned}$	specifies the confidence level for interval construction requests factoring of the covariance matrix computes the confidence interval and specifies the coverage reference point
NOINT	omits the intercept from computing covariances or correlations
SE	requests the standard error estimates in ML estimation
VARDEF=	specifies the divisor used in calculating covariances or correlations
WEIGHT	factors a weighted correlation or covariance matrix
Rotation Method and Properties	
GAMMA=	specifies the orthomax weight
HKPOWER=	specifies the power in Harris-Kaiser rotation
NORM=	specifies the method for row normalization in rotation
NOPROMAXNORM	turns off row normalization in promax rotation
POWER=	specifies the power to be used in promax rotation
PREROTATE=	specifies the prerotation method in promax rotation
RCONVERGE=	specifies the convergence criterion for rotation cycles
RITER=	specifies the maximum number of cycles for rotation
ROTATE=	specifies the rotation method
TAU=	specifies the oblimin weight
ODS Graphics	
PLOTS $=$	specifies ODS Graphics selection
Control Display Output	
ALL	displays all optional output except plots
CORR	displays the (partial) correlation matrix
EIGENVECTORS	displays the eigenvectors of the reduced correlation matrix
FLAG=	specifies the minimum absolute value to be flagged in the correlation and loading matrices
FUZZ=	specifies the maximum absolute value to be displayed as missing in the correlation and loading matrices
MSA	computes Kaiser's measure of sampling adequacy and the related partial correlations
NOPRINT	suppresses the display of all output
NPLOT=	specifies the number of factors to be plotted
PLOT	plots the rotated factor pattern
PLOTREF	plots the reference structure
PREPLOT	plots the factor pattern before rotation

Table 33.1 continued

Option	Description
PRINT	displays the input factor pattern or scoring coefficients and related statistics
REORDER	reorders the rows (variables) of various factor matrices
RESIDUALS	displays the residual correlation matrix and the associated partial correlation matrix
ROUND	prints correlation and loading matrices with rounded values
SCORE	displays the factor scoring coefficients
SCREE	displays the scree plot of the eigenvalues
SIMPLE	displays means, standard deviations, and number of observations
Numerical Properties	
CONVERGE=	specifies the convergence criterion
MAXITER=	specifies the maximum number of iterations
SINGULAR=	specifies the singularity criterion
Miscellaneous	
NOCORR	excludes the correlation matrix from the OUTSTAT= data set
NOBS $=$	specifies the number of observations
PARPREFIX=	specifies the prefix for the residual variables in the output data sets
PREFIX=	specifies the prefix for naming factors

ALL

displays all optional output except plots. When the input data set is TYPE=CORR, TYPE=UCORR, TYPE=COV, TYPE=UCOV, or TYPE=FACTOR, simple statistics, correlations, and MSA are not displayed.

ALPHA=p

specifies the level of confidence $1-p$ for interval construction. By default, $p=0.05$, corresponding to $1-p=95 \%$ confidence intervals. If p is greater than one, it is interpreted as a percentage and divided by 100 . With multiple confidence intervals to be constructed, the ALPHA= value is applied to each interval construction one at a time. This will not control the coverage probability of the intervals simultaneously. To control familywise coverage probability, you might consider supplying a nonconventional p by using methods such as Bonferroni adjustment.

CONVERGE=p

CONV=p
specifies the convergence criterion for the METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, or METHOD=ML option. Iteration stops when the maximum change in the communalities is less than the value of the CONVERGE= option. The default value is 0.001 . Negative values are not allowed.

CORR

C
displays the correlation matrix or partial correlation matrix.

COVARIANCE

COV
requests factoring of the covariance matrix instead of the correlation matrix. The COV option is effective only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. For other methods, PROC FACTOR produces the same results with or without the COV option.

COVER < = $p>$

$\mathrm{Cl}<=p$ >
computes the confidence intervals and optionally specifies the value of factor loading for coverage detection. By default, $p=0$. The specified value is represented by an asterisk
$\left.{ }^{*}\right)$ in the coverage display. This is useful for determining the salience of loadings. For example, if COVER $=0.4$, a display ' $0 *$ []' indicates that the entire confidence interval is above 0.4 , implying strong evidence for the salience of the loading. See the section "Confidence Intervals and the Salience of Factor Loadings" on page 1571 for more details.

DATA =SAS-data-set

specifies the input data set, which can be an ordinary SAS data set or a specially structured SAS data set as described in the section "Input Data Set" on page 1566. If the DATA= option is omitted, the most recently created SAS data set is used.

EIGENVECTORS

EV

displays the eigenvectors of the reduced correlation matrix, of which the diagonal elements are replaced with the communality estimates. When METHOD $=\mathrm{ML}$, the eigenvectors are for the weighted reduced correlation matrix. PROC FACTOR chooses the solution that makes the sum of the elements of each eigenvector nonnegative. If the sum of the elements is equal to zero, then the sign depends on how the number is rounded off.

FLAG=p

flags absolute values larger than p with an asterisk in the correlation and loading matrices. Negative values are not allowed for p. Values printed in the matrices are multiplied by 100 and rounded to the nearest integer (see the ROUND option). The FLAG= option has no effect when standard errors or confidence intervals are also printed.

FUZZ=p

prints correlations and factor loadings with absolute values less than p printed as missing. For partial correlations, the $\mathrm{FUZZ}=$ value is divided by 2 . For residual correlations, the $\mathrm{FUZZ}=$ value is divided by 4 . The exact values in any matrix can be obtained from the OUTSTAT= and ODS output data sets. Negative values are not allowed. The FUZZ= option has no effect when standard errors or confidence intervals are also printed.

GAMMA= p

specifies the orthomax weight used with the option ROTATE=ORTHOMAX or PREROTATE=ORTHOMAX. Alternatively, you can use ROTATE=ORTHOMAX (p) with p representing the orthomax weight. There is no restriction on valid values for the orthomax weight, although the most common values are between zero and the number of variables. The default GAMMA= value is one, resulting in the varimax rotation. See the section "Simplicity Functions for Rotations" on page 1572 for more details.

HEYWOOD

HEY
sets to 1 any communality greater than 1 , allowing iterations to proceed. See the section "Heywood Cases and Other Anomalies about Communality Estimates" on page 1576 for a discussion of Heywood cases.

HKPOWER=p
 HKP $=p$

specifies the power of the square roots of the eigenvalues used to rescale the eigenvectors for Harris-Kaiser (ROTATE=HK) rotation, assuming that the factors are extracted by the principal factor method. If the principal factor method is not used for factor extraction, the eigenvectors are replaced by the normalized columns of the unrotated factor matrix, and the eigenvalues are replaced by the column normalizing constants. HKPOWER= values between 0.0 and 1.0 are reasonable. The default value is 0.0 , yielding the independent cluster solution, in which each variable tends to have a large loading on only one factor. An HKPOWER= value of 1.0 is equivalent to an orthogonal rotation, with the varimax rotation as the default. You can also specify the HKPOWER= option with ROTATE=QUARTIMAX, ROTATE=BIQUARTIMAX, ROTATE=EQUAMAX, or ROTATE=ORTHOMAX, and so on. The only restriction is that the Harris-Kaiser rotation must be associated with an orthogonal rotation.

MAXITER=n

specifies the maximum number of iterations for factor extraction. You can use the MAXITER= option with the PRINIT, ULS, ALPHA, or ML method. The default is 30 .

METHOD=name

M=name
specifies the method for extracting factors. The default is METHOD=PRINCIPAL unless the DATA= data set is TYPE=FACTOR, in which case the default is METHOD=PATTERN. Valid values for name are as follows:

ALPHA I A produces alpha factor analysis.
HARRIS I H yields Harris component analysis of \mathbf{S}^{-1} RS ${ }^{-1}$ (Harris 1962), a noniterative approximation to canonical component analysis.
IMAGEII yields principal component analysis of the image covariance matrix, not Kaiser's (1963, 1970) or Kaiser and Rice's (1974) image analysis. A nonsingular correlation matrix is required.
MLIM performs maximum likelihood factor analysis with an algorithm due, except for minor details, to Fuller (1987). The option METHOD=ML requires a nonsingular correlation matrix.

PATTERN reads a factor pattern from a TYPE=FACTOR, TYPE=CORR, TYPE=UCORR, TYPE=COV, or TYPE=UCOV data set. If you create a TYPE=FACTOR data set in a DATA step, only observations containing the factor pattern (_TYPE_='PATTERN') and, if the factors are correlated, the interfactor correlations (_TYPE_='FCORR') are required.
PRINCIPAL I PRIN I P yields principal component analysis if no PRIORS option or statement is used or if you specify PRIORS=ONE; if you specify a PRIORS statement or a PRIORS = value other than PRIORS=ONE, a principal factor analysis is performed.

PRINIT yields iterated principal factor analysis.
SCORE reads scoring coefficients (_TYPE_='SCORE') from a TYPE=FACTOR, TYPE=CORR, TYPE=UCORR, TYPE=COV, or TYPE=UCOV data set. The data set must also contain either a correlation or a covariance matrix. Scoring coefficients are also displayed if you specify the OUT= option.
ULS I U produces unweighted least squares factor analysis.

MINEIGEN= p

$\mathbf{M I N}=p$
specifies the smallest eigenvalue for which a factor is retained. If you specify two or more of the MINEIGEN=, NFACTORS=, and PROPORTION= options, the number of factors retained is the minimum number satisfying any of the criteria. The MINEIGEN= option cannot be used with either the METHOD=PATTERN or the METHOD=SCORE option. Negative values are not allowed. The default is 0 unless you omit both the NFACTORS= and the PROPORTION = options and one of the following conditions holds:

- If you specify the METHOD=ALPHA or METHOD=HARRIS option, then MINEIGEN=1.
- If you specify the METHOD=IMAGE option, then

$$
\text { MINEIGEN }=\frac{\text { total image variance }}{\text { number of variables }}
$$

- For any other METHOD = specification, if prior communality estimates of 1.0 are used, then

$$
\text { MINEIGEN }=\frac{\text { total weighted variance }}{\text { number of variables }}
$$

When an unweighted correlation matrix is factored, this value is 1 .
produces the partial correlations between each pair of variables controlling for all other variables (the negative anti-image correlations) and Kaiser's measure of sampling adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977).

NFACTORS=n

NFACT=n
$\mathrm{N}=n$
specifies the maximum number of factors to be extracted and determines the amount of memory to be allocated for factor matrices. The default is the number of variables. Specifying a number that is small relative to the number of variables can substantially decrease the amount of memory required to run PROC FACTOR, especially with oblique rotations. If you specify two or more of the NFACTORS=, MINEIGEN=, and PROPORTION= options, the number of factors retained is the minimum number satisfying any of the criteria. If you specify the option NFACTORS $=0$, eigenvalues are computed, but no factors are extracted. If you specify the option NFACTORS $=-1$, neither eigenvalues nor factors are computed. You can use the NFACTORS = option with the METHOD=PATTERN or METHOD=SCORE option to specify a smaller number of factors than are present in the data set.

NOBS=n

specifies the number of observations. If the DATA= input data set is a raw data set, nobs is defined by default to be the number of observations in the raw data set. The NOBS= option overrides this default definition. If the DATA= input data set contains a covariance, correlation, or scalar product matrix, the number of observations can be specified either by using the NOBS= option in the PROC FACTOR statement or by including a _TYPE_='N' observation in the DATA= input data set.

NOCORR

prevents the correlation matrix from being transferred to the OUTSTAT= data set when you specify the METHOD=PATTERN option. The NOCORR option greatly reduces memory requirements when there are many variables but few factors. The NOCORR option is not effective if the correlation matrix is required for other requested output; for example, if the scores or the residual correlations are displayed (for example, by using the SCORE, RESIDUALS, or ALL option).

NOINT

omits the intercept from the analysis; covariances or correlations are not corrected for the mean.

NOPRINT

suppresses the display of all output. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, "Using the Output Delivery System."

NOPROMAXNORM | NOPMAXNORM

turns off the default row normalization of the prerotated factor pattern, which is used in computing the promax target matrix.

NORM=COV | KAISER | NONE | RAW | WEIGHT

specifies the method for normalizing the rows of the factor pattern for rotation. If you specify the option NORM=KAISER, Kaiser's normalization is used $\left(\sum_{j} p_{i j}^{2}=1\right)$. If you specify the option NORM=WEIGHT, the rows are weighted by the Cureton-Mulaik technique (Cureton and Mulaik 1975). If you specify the option NORM=COV, the rows of the pattern matrix are rescaled to represent covariances instead of correlations. If you specify
the option NORM=NONE or NORM=RAW, normalization is not performed. The default is NORM=KAISER.

NPLOTS | NPLOT=n

specifies the number of factors to be plotted. The default is to plot all factors. The smallest allowable value is 2 . If you specify the option $\operatorname{NPLOTS}=n$, all pairs of the first n factors are plotted, producing a total of $n(n-1) / 2$ plots.

OUT=SAS-data-set

creates a data set containing all the data from the DATA= data set plus variables called Factor1, Factor2, and so on, containing estimated factor scores. The DATA= data set must contain multivariate data, not correlations or covariances. You must also specify the NFACTORS= option to determine the number of factor score variables. If you specify partial variables in the PARTIAL statement, the OUT= data set will also contain the residual variables that are used for factor analysis. The output data set is described in detail in the section "Output Data Sets" on page 1568 . If you want to create a permanent SAS data set, you must specify a two-level name. Refer to "SAS Files" in SAS Language Reference: Concepts for more information about permanent data sets.

OUTSTAT=SAS-data-set

specifies an output data set containing most of the results of the analysis. The output data set is described in detail in the section "Output Data Sets" on page 1568. If you want to create a permanent SAS data set, you must specify a two-level name. Refer to "SAS Files" in SAS Language Reference: Concepts for more information about permanent data sets.

PARPREFIX=name

specifies the prefix for the residual variables in the OUT= and the OUTSTAT= data sets when partial variables are specified in the PARTIAL statement.

PLOT

plots the factor pattern after rotation. This option produces printer plots. High-quality ODS graphical plots for factor patterns can be requested with the PLOTS=LOADINGS or PLOTS=INITLOADINGS option.

PLOTREF

plots the reference structure instead of the default factor pattern after oblique rotation.

```
PLOTS < (global-plot-options) > = plot-request < (options)>
PLOTS < (global-plot-options) > = (plot-request < (options) > < ...plot-request <(options) > > )
```

specifies one or more ODS graphical plots in PROC FACTOR. When you specify only one plot-request, you can omit the parentheses around the plot-request. Here are some examples: plots=all
plots (flip) =loadings
plots=(loadings(flip) scree(unpack))

You must enable ODS graphics before requesting plots. For example:

```
    ods graphics on;
    proc factor plots=all;
    run;
    ods graphics off;
```

For more information about the ODS GRAPHICS statement, see Chapter 21, "Statistical Graphics Using ODS." For an example containing graphical displays of factor analysis results, see Example 33.2.

The following table shows the available plot-requests and their available suboptions:

Plot-Request	Plot Description	Suboptions
ALL	all available plots	all
INITLOADINGS	unrotated factor loadings	CIRCLE=, FLIP, NPLOTS=,
LOADINGS	rotated factor loadings	PLOTREF, and VECTOR CIRCLE=, FLIP, NPLOTS=, NONE
no ODS graphical plots	PLOTREF, and VECTOR	
PRELOADINGS	prerotated factor loadings	CIRCLE=, FLIP, NPLOTS=, SCREE
scree and variance explained	PLOTREF, and VECTOR	
UNPACK		

The following are the available global-plot-options or options for plots:
CIRCLE I CIRCLES < = numbers > specifies circles with prescribed areas to be drawn in scatter plots or vector plots, where the optional numbers represent proportions or percentages of areas enclosed by the circles in the plots. These numbers must lie between 0 and 100, inclusively. When a number is between 0 and 1 (inclusively), it is interpreted as a proportion; otherwise, it is interpreted as a percentage. A maximum of 5 numbers for the circles will be used. The CIRCLE option applies to the scatter or vector plots requested by the INITLOADINGS, LOADINGS, and PRELOADINGS options. By default, a unit-circle, which represents 100% of the total area, is drawn for the vector plots. However, no circle will be drawn for scatter plots unless the CIRCLE option is specified. Two special cases for this option are: (1) With no numbers following the CIRCLE option, a 100% circle will be drawn. (2) With CIRCLE=0, no circle will be drawn. This special case is primarily used to turn off the default unit-circle in vector plots.
FLIP switches the X and Y axes. It applies to the INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests.

NPLOT | NPLOTS $=n$ specifies the number of factors $n(n \geq 2)$ to be plotted. It applies to the INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests. Since this option can also be specified in the PROC FACTOR statement, the final value of n is determined by the following steps. The NPLOTS $=$ value of the PROC FACTOR is read first. If the NPLOTS= option is specified as a global-plot-option, the value of n will be updated. Then, if the NPLOTS $=$ option is again specified in an individual plot-request, the value will be updated again for that individual plot-request. For example, in the following statement, four factors are extracted with the $\mathrm{N}=4$ option:

```
proc factor n=4 nplots=3 plots(nplots=4)=
    (loadings preloadings(nplots=2));
```

Initially, plots of the first three factors are specified with the NPLOTS=3 option. When you are producing ODS graphical plots, the global-plotoption NPLOTS=4 is used. As a result, the LOADINGS plot-request will produce plots for all pairs of the first 4 factors. However, because the NPLOTS $=2$ is specified locally for the PRELOADINGS plot-request, it will produce a prerotated factor loading plot for the first two factors only.
The default NPLOTS $=$ value is 5 or the total number of factors (m), whichever is smaller. If you specify an NPLOTS= value that is greater than m, NPLOTS $=m$ will be used.

PLOTREF plots the reference structures rather than the factor pattern loadings. It applies to the INITLOADINGS, LOADINGS, and PRELOADINGS plotrequests when the factor solution is oblique. This option can also be set globally as an option in the PROC FACTOR statement.

UNPACK plots component graphs separately. It applies to the SCREE plot-request only.

VECTOR plots loadings in vector form. It applies to the INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests when the factor solution is orthogonal. For oblique solutions, the VECTOR option is ignored and the default scatter plots for factor loadings or reference structures are displayed.

Be aware that the PLOT option in the PROC FACTOR statement requests only the printer plots of factor loadings. The current option PLOTS= or PLOT=, however, is for ODS graphical plots.

You can specify options for the requested ODS graphical plots as global-plot-options or as local options. Global-plot-options apply to all appropriate individual plot-requests specified. For example, because the SCREE plot is not subject to axes flipping, the following two specifications are equivalent:

```
plots(flip)=(loadings preloadings scree)
plots=(loadings(flip) preloadings(flip) scree)
```

Options specified locally after each plot-request apply to that plot-request only. For example, consider the following specification:

```
plots=(scree(unpack) loadings(plotref) preloadings(flip))
```

The FLIP option applies to the PRELOADINGS plot-request but not the LOADINGS plotrequest; the PLOTREF option applies to the LOADINGS plot-request but not the PRELOADINGS plot-request; and the UNPACK option applies to the SCREE plot-request only.

POWER=n

specifies the power to be used in computing the target pattern for the option ROTATE $=$ PROMAX. Valid values must be integers ≥ 1. The default value is 3 . You can also specify the POWER= value in the ROTATE= option—for example, ROTATE=PROMAX(4).

PREFIX=name

specifies a prefix for naming the factors. By default, the names are Factor1, Factor2, ..., Factorn. If you specify PREFIX=ABC, the factors are named $\mathrm{ABC} 1, \mathrm{ABC} 2, \mathrm{ABC} 3$, and so on. The number of characters in the prefix plus the number of digits required to designate the variables should not exceed the current name length defined by the VALIDVARNAME= system option.

PREPLOT

plots the factor pattern before rotation. This option produces printer plots. High-quality ODS graphical plots for factor patterns can be requested with the PLOTS=PRELOADINGS option.

PREROTATE=name

PRE=name
specifies the prerotation method for the option ROTATE=PROMAX. Any rotation method other than PROMAX or PROCRUSTES can be used. The default is PREROTATE=VARIMAX. If a previously rotated pattern is read using the option METHOD=PATTERN, you should specify the PREROTATE=NONE option.

PRINT

displays the input factor pattern or scoring coefficients and related statistics. In oblique cases, the reference and factor structures are computed and displayed. The PRINT option is effective only with the option METHOD=PATTERN or METHOD=SCORE.

PRIORS=name

specifies a method for computing prior communality estimates. You can specify numeric values for the prior communality estimates by using the PRIORS statement. Valid values for name are as follows:

ASMC I A sets the prior communality estimates proportional to the squared multiple correlations but adjusted so that their sum is equal to that of the maximum absolute correlations (Cureton 1968).

INPUT I I reads the prior communality estimates from the first observation with either _TYPE_='PRIORS' or _TYPE_='COMMUNAL' in the DATA= data set (which cannot be TYPE=DATA).
MAX IM sets the prior communality estimate for each variable to its maximum absolute correlation with any other variable.

ONE IO sets all prior communalities to 1.0 .
RANDOM \mid R sets the prior communality estimates to pseudo-random numbers uniformly distributed between 0 and 1 .

SMC IS sets the prior communality estimate for each variable to its squared multiple correlation with all other variables.

The default prior communality estimates are as follows:

METHOD $=$	PRIORS $=$
PRINCIPAL	ONE
PRINIT	ONE
ALPHA	SMC
ULS	SMC
ML	SMC
HARRIS	(not applicable)
IMAGE	(not applicable)
PATTERN	(not applicable)
SCORE	(not applicable)

By default, the options METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, and METHOD=ML stop iterating and set the number of factors to 0 if an estimated communality exceeds 1. The options HEYWOOD and ULTRAHEYWOOD allow processing to continue.

PROPORTION= p

PERCENT= p

$\mathrm{P}=p$

specifies the proportion of common variance to be accounted for by the retained factors. The proportion of common variance is computed using the total prior communality estimates as the basis. If the value is greater than one, it is interpreted as a percentage and divided by 100. The options PROPORTION=0.75 and PERCENT=75 are equivalent. The default value is 1.0 or 100%. You cannot specify the PROPORTION= option with the METHOD=PATTERN or METHOD=SCORE option. If you specify two or more of the PROPORTION=, NFACTORS=, and MINEIGEN= options, the number of factors retained is the minimum number satisfying any of the criteria.

RANDOM=n

specifies a positive integer as a starting value for the pseudo-random number generator for use with the option PRIORS=RANDOM. If you do not specify the RANDOM= option, the time of day is used to initialize the pseudo-random number sequence. Valid values must be integers ≥ 1.

RCONVERGE=p

RCONV=p

specifies the convergence criterion for rotation cycles. Rotation stops when the scaled change of the simplicity function value is less than the RCONVERGE= value. The default convergence criterion is

$$
\left|f_{\text {new }}-f_{\text {old }}\right| / K<\epsilon
$$

where $f_{\text {new }}$ and $f_{\text {old }}$ are simplicity function values of the current cycle and the previous cycle, respectively, $K=\max \left(1,\left|f_{\text {old }}\right|\right)$ is a scaling factor, and ϵ is $1 \mathrm{E}-9$ by default and is modified by the RCONVERGE= value.

REORDER

RE
causes the rows (variables) of various factor matrices to be reordered on the output. Variables with their highest absolute loading (reference structure loading for oblique rotations) on the first factor are displayed first, from largest to smallest loading, followed by variables with their highest absolute loading on the second factor, and so on. The order of the variables in the output data set is not affected. The factors are not reordered.

RESIDUALS

RES
displays the residual correlation matrix and the associated partial correlation matrix. The diagonal elements of the residual correlation matrix are the unique variances.

RITER=n

specifies the maximum number of cycles n for factor rotation. Except for promax and Procrustes, you can use the RITER= option with all rotation methods. The default n is the maximum between 10 times the number of variables and 100 .

ROTATE=name

$\mathbf{R = n a m e}$

specifies the rotation method. The default is ROTATE=NONE.
Valid names for orthogonal rotations are as follows:
BIQUARTIMAX I BIQMAX specifies orthogonal biquartimax rotation. This corresponds to the specification ROTATE=ORTHOMAX(.5).

EQUAMAXIE specifies orthogonal equamax rotation. This corresponds to the specification ROTATE=ORTHOMAX with GAMMA=number of factors/2.

FACTORPARSIMAXIFPA specifies orthogonal factor parsimax rotation. This corresponds to the specification ROTATE=ORTHOMAX with GAMMA=number of variables.
NONE IN specifies that no rotation be performed, leaving the original orthogonal solution.
$\operatorname{ORTHCF}(p 1, p 2) \mid \operatorname{ORCF}(p 1, p 2)$ specifies the orthogonal Crawford-Ferguson rotation with the weights $p 1$ and $p 2$ for variable parsimony and factor parsimony, respectively. See the definitions of weights in the section "Simplicity Functions for Rotations" on page 1572.
$\operatorname{ORTHGENCF}(p 1, p 2, p 3, p 4) \mid \operatorname{ORGENCF}(p 1, p 2, p 3, p 4)$ specifies the orthogonal generalized Crawford-Ferguson rotation with the four weights $p 1, p 2, p 3$, and $p 4$. See the definitions of weights in the section "Simplicity Functions for Rotations" on page 1572.
ORTHOMAX $<(p)>\mid$ ORMAX $<(p)>$ specifies the orthomax rotation with orthomax weight p. If ROTATE=ORTHOMAX is used, the default p value is 1 unless specified otherwise in the GAMMA= option. Alternatively, ROTATE=ORTHOMAX (p) specifies p as the orthomax weight or the GAMMA= value. See the definition of the orthomax weight in the section "Simplicity Functions for Rotations" on page 1572.

PARSIMAX IPA specifies orthogonal parsimax rotation. This corresponds to the specification ROTATE=ORTHOMAX with

$$
\mathrm{GAMMA}=\frac{n v a r \times(n f a c t-1)}{n v a r+n f a c t-2}
$$

where nvar is the number of variables and nfact is the number of factors.
QUARTIMAX I QMAX I Q specifies orthogonal quartimax rotation. This corresponds to the specification ROTATE=ORTHOMAX(0).

VARIMAX I V specifies orthogonal varimax rotation. This corresponds to the specification ROTATE=ORTHOMAX with GAMMA=1.

Valid names for oblique rotations are as follows:

BIQUARTIMIN I BIQMIN specifies biquartimin rotation. It corresponds to the specification ROTATE=OBLIMIN(.5) or ROTATE=OBLIMIN with TAU=0.5.

COVARIMIN I CVMIN specifies covarimin rotation. It corresponds to the specification ROTATE=OBLIMIN(1) or ROTATE=OBLIMIN with TAU=1.
$\mathrm{HK}<(p)>\mid \mathrm{H}<(p)>\quad$ specifies Harris-Kaiser case II orthoblique rotation. When specifying this option, you can use the HKPOWER= option to set the power of the square roots of the eigenvalues by which the eigenvectors are scaled, assuming that the factors are extracted by the principal factor method. For other extraction methods, the unrotated factor pattern is column normalized. The power is then applied to the column normalizing constants, instead of the eigenvalues. You can also use $\operatorname{ROTATE}=\mathrm{HK}(p)$, with p representing the HKPOWER= value. The default associated orthogonal rotation with ROTATE $=\mathrm{HK}$ is the varimax rotation without Kaiser normalization. You might associate the Harris-Kaiser with other orthogonal rotations by using the ROTATE= option together with the HKPOWER= option.

OBBIQUARTIMAX I OBIQMAX specifies oblique biquartimax rotation.
OBEQUAMAX I OE specifies oblique equamax rotation.
OBFACTORPARSIMAX I OFPA specifies oblique factor parsimax rotation.
$\operatorname{OBLICF}(p 1, p 2) \mid \operatorname{OBCF}(p 1, p 2) \quad$ specifies the oblique Crawford-Ferguson rotation with the weights $p 1$ and $p 2$ for variable parsimony and factor parsimony, respectively. See the definitions of weights in the section "Simplicity Functions for Rotations" on page 1572.
$\operatorname{OBLIGENCF}(p 1, p 2, p 3, p 4) \mid \operatorname{OBGENCF}(p 1, p 2, p 3, p 4)$ specifies the oblique generalized Crawford-Ferguson rotation with the four weights $p 1, p 2, p 3$, and p4. See the definitions of weights in the section "Simplicity Functions for Rotations" on page 1572.

OBLIMIN $<(p)>\mid \operatorname{OBMIN}<(p)>$ specifies the oblimin rotation with oblimin weight p. If ROTATE=OBLIMIN is used, the default p value is zero unless specified otherwise in the TAU $=$ option. Alternatively, ROTATE=$=\operatorname{OBLIMIN}(p)$ specifies p as the oblimin weight or the TAU= value. See the definition of
the oblimin weight in the section "Simplicity Functions for Rotations" on page 1572.

OBPARSIMAX I OPA specifies oblique parsimax rotation.
OBQUARTIMAX I OQMAX specifies oblique quartimax rotation. This is the same as the QUARTIMIN method.

OBVARIMAX I OV specifies oblique varimax rotation.
PROCRUSTES specifies oblique Procrustes rotation with the target pattern provided by the TARGET= data set. The unrestricted least squares method is used with factors scaled to unit variance after rotation.
PROMAX $<(p)>\mid \mathrm{P}<(p)>$ specifies oblique promax rotation. You can use the PREROTATE $=$ option to set the desirable prerotation method, orthogonal or oblique. When used with ROTATE=PROMAX, the POWER= option lets you specify the power for forming the target. You can also use ROTATE $=\operatorname{PROMAX}(p)$, where p represents the $\operatorname{POWER}=$ value.

QUARTIMIN I QMIN specifies quartimin rotation. It is the same as the oblique quartimax method. It also corresponds to the specification ROTATE=OBLIMIN(0) or ROTATE=OBLIMIN with TAU=0.

ROUND

prints correlation and loading matrices with entries multiplied by 100 and rounded to the nearest integer. The exact values can be obtained from the OUTSTAT= and ODS output data sets. The ROUND option also flags absolute values larger than the FLAG= value with an asterisk in correlation and loading matrices (see the FLAG= option). If the FLAG= option is not specified, the root mean square of all the values in the matrix printed is used as the default FLAG= value. The ROUND option has no effect when standard errors or confidence intervals are also printed.

SCORE

displays the factor scoring coefficients. The squared multiple correlation of each factor with the variables is also displayed except in the case of unrotated principal components. The SCORE option also outputs the factor scoring coefficients in the _TYPE_=SCORE or _TYPE_=USCORE observations in the OUTSTAT= data set. Unless you specify the NOINT option in PROC FACTOR, the scoring coefficients should be applied to standardized variables-variables that are centered by subtracting the original variable means and then divided by the original variable standard deviations. With the NOINT option, the scoring coefficients should be applied to data without centering.

SCREE

displays a scree plot of the eigenvalues (Cattell 1966, 1978; Cattell and Vogelman 1977; Horn and Engstrom 1979). This option produces printer plots. High-quality scree plots can be requested with the PLOTS=SCREE option.

SE

STDERR

computes standard errors for various classes of unrotated and rotated solutions under the maximum likelihood estimation.

SIMPLE

S
displays means, standard deviations, and the number of observations.

SINGULAR=p

$\mathbf{S I N G}=p$
specifies the singularity criterion, where $0<p<1$. The default value is $1 \mathrm{E}-8$.

TARGET=SAS-data-set

specifies an input data set containing the target pattern for Procrustes rotation (see the description of the ROTATE= option). The TARGET= data set must contain variables with the same names as those being factored. Each observation in the TARGET= data set becomes one column of the target factor pattern. Missing values are treated as zeros. The _NAME_ and _TYPE_ variables are not required and are ignored if present.

TAU=p
specifies the oblimin weight used with the option ROTATE=OBLIMIN or PREROTATE=OBLIMIN. Alternatively, you can use $\operatorname{ROTATE}=\operatorname{OBLIMIN}(p)$ with p representing the oblimin weight. There is no restriction on valid values for the oblimin weight, although for practical purposes a negative or zero value is recommended. The default TAU= value is 0 , resulting in the quartimin rotation. See the section "Simplicity Functions for Rotations" on page 1572 for more details.

ULTRAHEYWOOD

ULTRA

allows communalities to exceed 1. The ULTRAHEYWOOD option can cause convergence problems because communalities can become extremely large, and ill-conditioned Hessians might occur. See the section "Heywood Cases and Other Anomalies about Communality Estimates" on page 1576 for a discussion of Heywood cases.

VARDEF=DF | N | WDF | WEIGHT | WGT

specifies the divisor used in the calculation of variances and covariances. The default value is VARDEF=DF. The values and associated divisors are displayed in the following table where $i=0$ if the NOINT option is used and $i=1$ otherwise, and where k is the number of partial variables specified in the PARTIAL statement.

Value	Description	Divisor
DF	degrees of freedom	$n-k-i$
N	number of observations	$n-k$
WDF	sum of weights DF	$\sum_{i} w_{i}-k-i$
WEIGHT \| WGT	sum of weights	$\sum_{i} w_{i}-k$

WEIGHT

factors a weighted correlation or covariance matrix. The WEIGHT option can be used only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. The input data set must be of type CORR, UCORR, COV, UCOV, or FACTOR, and the variable weights are obtained from an observation with _TYPE_='WEIGHT'.

BY Statement

BY variables ;

You can specify a BY statement with PROC FACTOR to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for PROC FACTOR. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

If you specify the TARGET= option and the TARGET= data set does not contain any of the BY variables, then the entire TARGET= data set is used as a Procrustean target for each BY group in the DATA = data set.

If the TARGET= data set contains some but not all of the BY variables, or if some BY variables do not have the same type or length in the TARGET= data set as in the DATA= data set, then PROC FACTOR displays an error message and stops.

If all the BY variables appear in the TARGET= data set with the same type and length as in the DATA= data set, then each BY group in the TARGET= data set is used as a Procrustean target for the corresponding BY group in the DATA= data set. The BY groups in the TARGET= data set must be in the same order as in the DATA= data set. If you specify the NOTSORTED option in the BY statement, there must be identical BY groups in the same order in both data sets. If you do not specify the NOTSORTED option, some BY groups can appear in one data set but not in the other.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the Base SAS Procedures Guide.

FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation, include the variable's name in a FREQ statement. The procedure then treats the data set as if each observation appears n times, where n is the value of the FREQ variable for the observation. The total number of observations is considered to be equal to the sum of the FREQ variable when the procedure determines degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If the value is not an integer, the value is truncated to an integer.

The WEIGHT and FREQ statements have a similar effect, except in determining the number of observations for significance tests.

PARTIAL Statement

PARTIAL variables ;
If you want the analysis to be based on a partial correlation or covariance matrix, use the PARTIAL statement to list the variables that are used to partial out the variables in the analysis.

PRIORS Statement

PRIORS communalities ;

The PRIORS statement specifies numeric values between 0.0 and 1.0 for the prior communality estimates for each variable. The first numeric value corresponds to the first variable in the VAR statement, the second value to the second variable, and so on. The number of numeric values must equal the number of variables. For example:

```
proc factor;
    var x y z;
    priors . 7 . 8 .9;
run;
```

You can specify various methods for computing prior communality estimates with the PRIORS= option in the PROC FACTOR statement. Refer to the description of that option for more information about the default prior communality estimates.

VAR Statement

VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR statement is omitted, all numeric variables not specified in other statements are analyzed.

WEIGHT Statement

WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, specify a variable containing weights in a WEIGHT statement. This is often done when the variance associated with each observation is different and the values of the weight variable are proportional to the reciprocals of the variances. If a variable value is negative or is missing, it is excluded from the analysis.

Details: FACTOR Procedure

Input Data Set

The FACTOR procedure can read an ordinary SAS data set containing raw data or a special data set specified as a TYPE=CORR, TYPE=UCORR, TYPE=SSCP, TYPE=COV, TYPE=UCOV, or TYPE=FACTOR data set containing previously computed statistics. A TYPE=CORR data set can be created by the CORR procedure or various other procedures such as the PRINCOMP procedure. It contains means, standard deviations, the sample size, the correlation matrix, and possibly other statistics if it is created by some procedure other than PROC CORR. A TYPE=COV data set is similar to a TYPE=CORR data set but contains a covariance matrix. A TYPE=UCORR or TYPE=UCOV data set contains a correlation or covariance matrix that is not corrected for the mean. The default VAR variable list does not include Intercept if the DATA= data set is TYPE=SSCP. If the Intercept variable is explicitly specified in the VAR statement with a TYPE=SSCP data set, the NOINT option is activated. A TYPE=FACTOR data set can be created by the FACTOR procedure and is described in the section "Output Data Sets" on page 1568.

If your data set has many observations and you plan to run FACTOR several times, you can save computer time by first creating a TYPE=CORR data set and using it as input to PROC FACTOR, as in the following statements:

```
proc corr data=raw out=correl; /* create TYPE=CORR data set */
proc factor data=correl method=ml; /* maximum likelihood */
proc factor data=correl; /* principal components */
```

The data set created by the CORR procedure is automatically given the TYPE=CORR data set option, so you do not have to specify TYPE=CORR. However, if you use a DATA step with a SET statement to modify the correlation data set, you must use the TYPE=CORR attribute in the new data set. You can use a VAR statement with PROC FACTOR when reading a TYPE=CORR data set to select a subset of the variables or change the order of the variables.

Problems can arise from using the CORR procedure when there are missing data. By default, PROC CORR computes each correlation from all observations that have values present for the pair of variables involved (pairwise deletion). The resulting correlation matrix might have negative
eigenvalues. If you specify the NOMISS option with the CORR procedure, observations with any missing values are completely omitted from the calculations (listwise deletion), and there is no danger of negative eigenvalues.

PROC FACTOR can also create a TYPE=FACTOR data set, which includes all the information in a TYPE=CORR data set, and use it for repeated analyses. For a TYPE=FACTOR data set, the default value of the METHOD= option is PATTERN. The following PROC FACTOR statements produce the same results as the previous example:

```
proc factor data=raw method=ml outstat=fact; /* max. likelihood */
proc factor data=fact method=prin; /* principal components */
```

You can use a TYPE=FACTOR data set to try several different rotation methods on the same data without repeatedly extracting the factors. In the following example, the second and third PROC FACTOR statements use the data set fact created by the first PROC FACTOR statement:

```
proc factor data=raw outstat=fact; /* principal components */
proc factor rotate=varimax; /* varimax rotation */
proc factor rotate=quartimax; /* quartimax rotation */
```

You can create a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set in a DATA step for PROC FACTOR to read as input. For example, in the following a TYPE=CORR data set is created and is read as input data set by the subsequent PROC FACTOR statement:

```
data correl(type=corr);
    _TYPE_='CORR';
    input _NAME_ $ x y z;
    datalines;
x 1.0 . .
y . 7 1.0.
z . 5 . 4 1.0
;
proc factor;
run;
```

Be sure to specify the TYPE= option in parentheses after the data set name in the DATA statement and include the _TYPE_ and _NAME_ variables. In a TYPE=CORR data set, only the correlation matrix (_TYPE_='CORR') is necessary. It can contain missing values as long as every pair of variables has at least one nonmissing value.

You can also create a TYPE=FACTOR data set containing only a factor pattern (_TYPE_='PATTERN') and use the FACTOR procedure to rotate it, as these statements show:

```
data pat(type=factor);
    _TYPE_='PATTERN';
    input _NAME_ $ x y z;
    datalines;
factor1 . 5 . }7\mathrm{ . }
factor2 . }8\mathrm{ . 2 . }
;
proc factor rotate=promax prerotate=none;
run;
```

If the input factors are oblique, you must also include the interfactor correlation matrix with _TYPE_='FCORR', as shown here:

```
data pat(type=factor);
    input _TYPE_ $ _NAME_ $ x y z;
    datalines;
pattern factor1 . 5 . }7\mathrm{ . 3
pattern factor2 . }8\mathrm{ . 2 . }
fcorr factor1 1.0 . 2 .
fcorr factor2 .2 1.0 .
;
proc factor rotate=promax prerotate=none;
run;
```

Some procedures, such as the PRINCOMP and CANDISC procedures, produce TYPE=CORR or TYPE=UCORR data sets containing scoring coefficients (_TYPE_='SCORE' or _TYPE_= 'USCORE'). These coefficients can be input to PROC FACTOR and rotated by using the METHOD=SCORE option, as in the following statements:

```
proc princomp data=raw n=2 outstat=prin;
run;
proc factor data=prin method=score rotate=varimax;
run;
```

Notice that the input data set prin must contain the correlation matrix as well as the scoring coefficients.

Output Data Sets

The OUT= Data Set

The OUT= data set contains all the data in the DATA= data set plus new variables called Factor1, Factor2, and so on, containing estimated factor scores. Each estimated factor score is computed as a linear combination of the standardized values of the variables that are factored. The coefficients are always displayed if the OUT= option is specified, and they are labeled "Standardized Scoring Coefficients."

If partial variables are specified in the PARTIAL statement, the factor analysis is on the residuals of the variables, which are regressed on the partial variables. In this case, the OUT= data set also contains the (unstandardized) residuals, which are prefixed by R_ by default. For example, the residual of variable X is named $\mathrm{R} _\mathrm{X}$ in the OUT= data set. You might also assign the prefix by the PARPREFIX= option. Because the residuals are factor-analyzed, the estimated factor scores are computed as linear combinations of the standardized values of the residuals, but not the original variables.

The OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set produced by the CORR procedure, but it is a TYPE=FACTOR data set and it contains many results in addition to those produced by PROC CORR. The OUTSTAT= data set contains observations with _TYPE_='UCORR' and _TYPE_='USTD' if you specify the NOINT option.

The output data set contains the following variables:

- the BY variables, if any
- two new character variables, _TYPE_ and _NAME_
- the variables analyzed-those in the VAR statement, or, if there is no VAR statement, all numeric variables not listed in any other statement. If partial variables are specified in the PARTIAL statement, the residuals are included instead. By default, the residual variable names are prefixed by R_{-}, unless you specify something different in the PARPREFIX= option.

Each observation in the output data set contains some type of statistic as indicated by the _TYPE_ variable. The _NAME_ variable is blank except where otherwise indicated. The values of the _TYPE_ variable are as follows:

MEAN	means
STD	standard deviations
USTD	uncorrected standard deviations
N	sample size
CORR	correlations. The _NAME_ variable contains the name of the variable corresponding to each row of the correlation matrix.
UCORR	uncorrected correlations. The _NAME_ variable contains the name of the variable corresponding to each row of the uncorrected correlation matrix.
IMAGE	image coefficients. The _NAME_ variable contains the name of the variable corresponding to each row of the image coefficient matrix.
IMAGECOV	image covariance matrix. The _NAME_variable contains the name of the variable corresponding to each row of the image covariance matrix.
COMMUNAL	final communality estimates
PRIORS	prior communality estimates, or estimates from the last iteration for iterative methods
WEIGHT	variable weights
SUMWGT	sum of the variable weights
EIGENVAL	eigenvalues
UNROTATE	unrotated factor pattern. The _NAME_ variable contains the name of the factor.
SE_UNROT	standard error estimates for the unrotated loadings. The _NAME_ variable contains the name of the factor.

RESIDUAL residual correlations. The _NAME_ variable contains the name of the variable corresponding to each row of the residual correlation matrix.

PRETRANS transformation matrix from prerotation. The _NAME_ variable contains the name of the factor.

PREFCORR prerotated interfactor correlations. The _NAME_ variable contains the name of the factor.

SE_PREFC standard error estimates for prerotated interfactor correlations. The _NAME_ variable contains the name of the factor.
PREROTAT prerotated factor pattern. The _NAME_ variable contains the name of the factor.
SE_PREPA standard error estimates for the prerotated loadings. The _NAME_ variable contains the name of the factor.
PRERCORR prerotated reference axis correlations. The _NAME_ variable contains the name of the factor.

PREREFER prerotated reference structure. The _NAME_ variable contains the name of the factor.

PRESTRUC prerotated factor structure. The _NAME_variable contains the name of the factor.
SE_PREST standard error estimates for prerotated structure loadings. The _NAME_ variable contains the name of the factor.

PRESCORE prerotated scoring coefficients. The _NAME_ variable contains the name of the factor.

TRANSFOR transformation matrix from rotation. The _NAME_ variable contains the name of the factor.

FCORR interfactor correlations. The _NAME_ variable contains the name of the factor.
SE_FCORR standard error estimates for interfactor correlations. The _NAME_ variable contains the name of the factor.

PATTERN
SE_PAT

RCORR
REFERENC
STRUCTUR
SE_STRUC

SCORE

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables if the SCORE option is specified on the PROC FACTOR statement. The _NAME_ variable contains the name of the factor.

Confidence Intervals and the Salience of Factor Loadings

The traditional approach to determining salient loadings (loadings that are considered large in absolute values) employs rules of thumb such as 0.3 or 0.4 . However, this does not use the statistical evidence efficiently. The asymptotic normality of the distribution of factor loadings enables you to construct confidence intervals to gauge the salience of factor loadings. To guarantee the rangerespecting properties of confidence intervals, a transformation procedure such as in CEFA (Browne et al. 2004) is used. For example, because the orthogonal rotated factor loading θ must be bounded between -1 and +1 , the Fisher transformation

$$
\varphi=\frac{1}{2} \log \left(\frac{1+\theta}{1-\theta}\right)
$$

is employed so that φ is an unbounded parameter. Assuming the asymptotic normality of $\hat{\varphi}$, a symmetric confidence interval for φ is constructed. Then, a back-transformation on the confidence limits yields an asymmetric confidence interval for θ. Applying the results of Browne (1982), a $(1-\alpha) 100 \%$ confidence interval for the orthogonal factor loading θ is

$$
\left(\hat{\theta}_{l}=\frac{a / b-1}{a / b+1}, \quad \hat{\theta}_{u}=\frac{a \times b-1}{a \times b+1}\right)
$$

where

$$
a=\frac{1+\hat{\theta}}{1-\hat{\theta}}, \quad b=\exp \left(z_{\alpha / 2} \times \frac{2 \hat{\sigma}}{1-\hat{\theta}^{2}}\right)
$$

and $\hat{\theta}$ is the estimated factor loading, $\hat{\sigma}$ is the standard error estimate of the factor loading, and $z_{\alpha / 2}$ is the $(1-\alpha / 2) 100$ percentile point of a standard normal distribution.

Once the confidence limits are constructed, you can use the corresponding coverage displays for determining the salience of the variable-factor relationship. In a coverage display, the COVER= value is represented by an asterisk $(*)$. The following table summarizes various displays and their interpretations.

Table 33.2 Interpretations of the Coverage Displays

Positive Estimate	Negative Estimate	COVER=0 Specified	Interpretation $[0]^{*}$${ }^{*[0]}$
		The estimate is not significantly different from zero, and the CI covers a region of values that are smaller in magnitude than the COVER= value. This is strong statistical evidence for the nonsalience of the variable- factor relationship.	
0[]*	${ }^{*}[] 0$	The estimate is significantly different from zero, but the CI covers a region of values that are smaller in mag- nitude than the COVER= value. This is strong statisti- cal evidence for the nonsalience of the variable-factor relationship.	
$\left[0^{*}\right]$	$\left[{ }^{*} 0\right]$	$[0]$	The estimate is not significantly different from zero or the COVER= value. The population value might have been larger or smaller in magnitude than the COVER= value. There is no statistical evidence for the salience of the variable-factor relationship.
$0[*]$	$[*] 0$	The estimate is significantly different from zero but not from the COVER= value. This is marginal statistical evidence for the salience of the variable-factor relation- ship.	
$0 *[]$	[]$* 0$	0[] or []0	The estimate is significantly different from zero, and the CI covers a region of values that are larger in mag- nitude than the COVER= value. This is strong sta- tistical evidence for the salience of the variable-factor relationship.

See Example 33.4 for an illustration of the use of confidence intervals for interpreting factors.

Simplicity Functions for Rotations

To rotate a factor pattern is to apply a nonsingular linear transformation to the unrotated factor pattern matrix. An optimal transformation is usually defined as a minimum or maximum point of a simplicity function. Different rotation methods are based on different simplicity functions employed.

For the promax or the Procrustes rotation, the simplicity function used is the sum of squared differences between the rotated factor pattern and the target matrix. The optimal transformation is obtained by minimizing this simplicity function with respect to the choices of all possible transformation.

For the class of the generalized Crawford-Ferguson family (Jennrich 1973), the simplicity function being optimized is

$$
f=k_{1} Z+k_{2} H+k_{3} V+k_{4} Q
$$

where

$$
\begin{aligned}
& Z=\left(\sum_{j} \sum_{i} b_{i j}^{2}\right)^{2}, \quad H=\sum_{i}\left(\sum_{j} b_{i j}^{2}\right)^{2} \\
& V=\sum_{j}\left(\sum_{i} b_{i j}^{2}\right)^{2}, \quad Q=\sum_{j} \sum_{i} b_{i j}^{4}
\end{aligned}
$$

k_{1}, k_{2}, k_{3}, and k_{4} are constants, and $b_{i j}$ represents an element of the rotated pattern matrix. Except for specialized research purposes, it is uncommon in practice to use this simplicity function directly for rotation. However, this simplicity function reduces to many well-known classes of rotations. One of these is the Crawford-Ferguson family (Crawford and Ferguson 1970), which minimizes

$$
f_{c f}=c_{1}(H-Q)+c_{2}(V-Q)
$$

where c_{1} and c_{2} are constants, $(H-Q)$ represents variable (row) parsimony, and $(V-Q)$ represents factor (column) parsimony. Therefore, the relative importance of both the variable parsimony and of the factor parsimony is adjusted using the constants c_{1} and c_{2}. The orthomax class (see Harman 1976) maximizes the function

$$
f_{o r}=p Q-\gamma V
$$

where γ is the orthomax weight and is usually between 0 and the number of variables p. The oblimin class minimizes the function

$$
f_{o b}=p(H-Q)-\tau(Z-V)
$$

where τ is the oblimin weight. For practical purposes, a negative or zero value for τ is recommended.

All of the preceding definitions are for rotations without row normalization. For rotations with Kaiser normalization, the definition of $b_{i j}$ is replaced by $b_{i j} / h_{i}$, where h_{i} is the communality estimate of variable i.

Missing Values

If the DATA= data set contains data (rather than a matrix or factor pattern), then observations with missing values for any variables in the analysis are omitted from the computations. If a correlation or covariance matrix is read, it can contain missing values as long as every pair of variables has at least one nonmissing entry. Missing values in a pattern or scoring coefficient matrix are treated as zeros.

Cautions

- The amount of time that FACTOR takes is roughly proportional to the cube of the number of variables. Factoring 100 variables, therefore, takes about 1,000 times as long as factoring 10 variables. Iterative methods (PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE, HARRIS).
- No computer program is capable of reliably determining the optimal number of factors, since the decision is ultimately subjective. You should not blindly accept the number of factors obtained by default; instead, use your own judgment to make a decision.
- Singular correlation matrices cause problems with the options PRIORS=SMC and METHOD=ML. Singularities can result from using a variable that is the sum of other variables, coding too many dummy variables from a classification variable, or having more variables than observations.
- If you use the CORR procedure to compute the correlation matrix and there are missing data and the NOMISS option is not specified, then the correlation matrix might have negative eigenvalues.
- If a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set is copied or modified using a DATA step, the new data set does not automatically have the same TYPE as the old data set. You must specify the TYPE= data set option in the DATA statement. If you try to analyze a data set that has lost its TYPE=CORR attribute, PROC FACTOR displays a warning message saying that the data set contains _NAME_ and _TYPE_ variables but analyzes the data set as an ordinary SAS data set.
- For a TYPE=FACTOR data set, the default is METHOD=PATTERN, not METHOD=PRIN.

Factor Scores

The FACTOR procedure can compute estimated factor scores directly if you specify the NFACTORS = and OUT= options, or indirectly using the SCORE procedure. The latter method is preferable if you use the FACTOR procedure interactively to determine the number of factors, the rotation method, or various other aspects of the analysis. To compute factor scores for each observation by using the SCORE procedure, do the following:

- Use the SCORE option in the PROC FACTOR statement.
- Create a TYPE=FACTOR output data set with the OUTSTAT= option.
- Use the SCORE procedure with both the raw data and the TYPE=FACTOR data set.
- Do not use the TYPE= option in the PROC SCORE statement.

For example, the following statements could be used:

```
proc factor data=raw score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;
```

or

```
proc corr data=raw out=correl;
run;
proc factor data=correl score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;
```

For a more detailed example, see Example 76.1 in Chapter 76, "The SCORE Procedure."
A component analysis (principal, image, or Harris) produces scores with mean zero and variance one. If you have done a common factor analysis, the true factor scores have mean zero and variance one, but the computed factor scores are only estimates of the true factor scores. These estimates have mean zero but variance equal to the squared multiple correlation of the factor with the variables. The estimated factor scores might have small nonzero correlations even if the true factors are uncorrelated.

Variable Weights and Variance Explained

A principal component analysis of a correlation matrix treats all variables as equally important. A principal component analysis of a covariance matrix gives more weight to variables with larger variances. A principal component analysis of a covariance matrix is equivalent to an analysis of a weighted correlation matrix, where the weight of each variable is equal to its variance. Variables with large weights tend to have larger loadings on the first component and smaller residual correlations than variables with small weights.

You might want to give weights to variables by using values other than their variances. Mulaik (1972) explains how to obtain a maximally reliable component by means of a weighted principal component analysis. With the FACTOR procedure, you can indirectly give arbitrary weights to the variables by using the COV option and rescaling the variables to have variance equal to the desired weight, or you can give arbitrary weights directly by using the WEIGHT option and including the weights in a TYPE=CORR data set.

Arbitrary variable weights can be used with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. Alpha and ML factor analyses compute variable weights based on the communalities (Harman 1976, pp. 217-218). For alpha factor analysis, the weight of a variable is the reciprocal of its communality. In ML factor analysis, the weight is the reciprocal of the uniqueness. Harris component analysis uses weights equal to the reciprocal of one minus the squared multiple correlation of each variable with the other variables.

For uncorrelated factors, the variance explained by a factor can be computed with or without taking the weights into account. The usual method for computing variance accounted for by a factor is to take the sum of squares of the corresponding column of the factor pattern, yielding an unweighted result. If the square of each loading is multiplied by the weight of the variable before the sum is taken, the result is the weighted variance explained, which is equal to the corresponding eigenvalue except in image analysis. Whether the weighted or unweighted result is more important depends on the purpose of the analysis.

In the case of correlated factors, the variance explained by a factor can be computed with or without taking the other factors into account. If you want to ignore the other factors, the variance explained is given by the weighted or unweighted sum of squares of the appropriate column of the factor structure since the factor structure contains simple correlations. If you want to subtract the variance explained by the other factors from the amount explained by the factor in question (the Type II variance explained), you can take the weighted or unweighted sum of squares of the appropriate column of the reference structure because the reference structure contains semipartial correlations. There are other ways of measuring the variance explained. For example, given a prior ordering of the factors, you can eliminate from each factor the variance explained by previous factors and compute a Type I variance explained. Harman (1976, pp. 268-270) provides another method, which is based on direct and joint contributions.

Heywood Cases and Other Anomalies about Communality Estimates

Since communalities are squared correlations, you would expect them always to lie between 0 and 1. It is a mathematical peculiarity of the common factor model, however, that final communality estimates might exceed 1. If a communality equals 1 , the situation is referred to as a Heywood case, and if a communality exceeds 1 , it is an ultra-Heywood case. An ultra-Heywood case implies that some unique factor has negative variance, a clear indication that something is wrong. Possible causes include the following:

- bad prior communality estimates
- too many common factors
- too few common factors
- not enough data to provide stable estimates
- the common factor model is not an appropriate model for the data

An ultra-Heywood case renders a factor solution invalid. Factor analysts disagree about whether or not a factor solution with a Heywood case can be considered legitimate.

With METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, or METHOD=ML, the FACTOR procedure, by default, stops iterating and sets the number of factors to 0 if an estimated communality exceeds 1. To enable processing to continue with a Heywood or ultra-Heywood case, you can use the HEYWOOD or ULTRAHEYWOOD option in the PROC FACTOR statement. The HEYWOOD
option sets the upper bound of any communality to 1 , while the ULTRAHEYWOOD option allows communalities to exceed 1.

Theoretically, the communality of a variable should not exceed its reliability. Violation of this condition is called a quasi-Heywood case and should be regarded with the same suspicion as an ultra-Heywood case.

Elements of the factor structure and reference structure matrices can exceed 1 only in the presence of an ultra-Heywood case. On the other hand, an element of the factor pattern might exceed 1 in an oblique rotation.

The maximum likelihood method is especially susceptible to quasi- or ultra-Heywood cases. During the iteration process, a variable with high communality is given a high weight; this tends to increase its communality, which increases its weight, and so on.

It is often stated that the squared multiple correlation of a variable with the other variables is a lower bound to its communality. This is true if the common factor model fits the data perfectly, but it is not generally the case with real data. A final communality estimate that is less than the squared multiple correlation can, therefore, indicate poor fit, possibly due to not enough factors. It is by no means as serious a problem as an ultra-Heywood case. Factor methods that use the NewtonRaphson method can actually produce communalities less than 0 , a result even more disastrous than an ultra-Heywood case.

The squared multiple correlation of a factor with the variables might exceed 1 , even in the absence of ultra-Heywood cases. This situation is also cause for alarm. Alpha factor analysis seems to be especially prone to this problem, but it does not occur with maximum likelihood. If a squared multiple correlation is negative, there are too many factors retained.

With data that do not fit the common factor model perfectly, you can expect some of the eigenvalues to be negative. If an iterative factor method converges properly, the sum of the eigenvalues corresponding to rejected factors should be 0 ; hence, some eigenvalues are positive and some negative. If a principal factor analysis fails to yield any negative eigenvalues, the prior communality estimates are probably too large. Negative eigenvalues cause the cumulative proportion of variance explained to exceed 1 for a sufficiently large number of factors. The cumulative proportion of variance explained by the retained factors should be approximately 1 for principal factor analysis and should converge to 1 for iterative methods. Occasionally, a single factor can explain more than 100 percent of the common variance in a principal factor analysis, indicating that the prior communality estimates are too low.

If a squared canonical correlation or a coefficient alpha is negative, there are too many factors retained.

Principal component analysis, unlike common factor analysis, has none of these problems if the covariance or correlation matrix is computed correctly from a data set with no missing values. Various methods for missing value correlation or severe rounding of the correlations can produce negative eigenvalues in principal components.

Time Requirements

$n=$ number of observations
$v=$ number of variables
$f=$ number of factors
$i=$ number of iterations during factor extraction
$r=$ length of iterations during factor rotation

The time required to compute \ldots	is roughly proportional to
an overall factor analysis	$i v^{3}$
the correlation matrix	$n v^{2}$
PRIORS=SMC or ASMC	v^{3}
PRIORS=MAX	v^{2}
eigenvalues	v^{3}
final eigenvectors	$f v^{2}$
generalized Crawford-Ferguson	$r v f^{2}$
family of rotations,	
PROMAX, or HK	$v f^{2}$
ROTATE=PROCRUSTES	

Each iteration in the PRINIT or ALPHA method requires computation of eigenvalues and f eigenvectors.

Each iteration in the ML or ULS method requires computation of eigenvalues and $v-f$ eigenvectors.

The amount of time that PROC FACTOR takes is roughly proportional to the cube of the number of variables. Factoring 100 variables, therefore, takes about 1000 times as long as factoring 10 variables. Iterative methods (PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE, HARRIS).

Displayed Output

PROC FACTOR output includes the following.

- Mean and Std Dev (standard deviation) of each variable and the number of observations, if you specify the SIMPLE option
- Correlations, if you specify the CORR option
- Inverse Correlation Matrix, if you specify the ALL option
- Partial Correlations Controlling all other Variables (negative anti-image correlations), if you specify the MSA option. If the data are appropriate for the common factor model, the partial correlations should be small.
- Kaiser's Measure of Sampling Adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977) both overall and for each variable, if you specify the MSA option. The MSA is a summary of how small the partial correlations are relative to the ordinary correlations. Values greater than 0.8 can be considered good. Values less than 0.5 require remedial action, either by deleting the offending variables or by including other variables related to the offenders.
- Prior Communality Estimates, unless 1.0 s are used or unless you specify the METHOD=IMAGE, METHOD=HARRIS, METHOD=PATTERN, or METHOD=SCORE option
- Squared Multiple Correlations of each variable with all the other variables, if you specify the METHOD=IMAGE or METHOD=HARRIS option
- Image Coefficients, if you specify the METHOD=IMAGE option
- Image Covariance Matrix, if you specify the METHOD=IMAGE option
- Preliminary Eigenvalues based on the prior communalities, if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or METHOD=ULS option. The table produced includes the Total and the Average of the eigenvalues, the Difference between successive eigenvalues, the Proportion of variation represented, and the Cumulative proportion of variation.
- the number of factors that are retained, unless you specify the METHOD=PATTERN or METHOD=SCORE option
- the Scree Plot of Eigenvalues, if you specify the SCREE option. The preliminary eigenvalues are used if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or METHOD=ULS option.
- the iteration history, if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or METHOD=ULS option. The table produced contains the iteration number (Iter); the Criterion being optimized (Jöreskog 1977); the Ridge value for the iteration if you specify the METHOD=ML or METHOD=ULS option; the maximum Change in any communality estimate; and the Communalities.
- Significance tests, if you specify the option METHOD=ML, including Bartlett's chi-square, df, and Prob $>\chi^{2}$ for H_{0} : No common factors and H_{0} : factors retained are sufficient to explain the correlations. The variables should have an approximate multivariate normal distribution for the probability levels to be valid. Lawley and Maxwell (1971) suggest that the number of observations should exceed the number of variables by 50 or more, although Geweke and Singleton (1980) claim that as few as 10 observations are adequate with five variables and one common factor. Certain regularity conditions must also be satisfied for Bartlett's χ^{2} test to be valid (Geweke and Singleton 1980), but in practice these conditions usually are satisfied. The notation Prob>chi**2 means "the probability under the null hypothesis of obtaining a greater χ^{2} statistic than that observed." The chi-square value is displayed with and without Bartlett's correction.
- Akaike's Information Criterion, if you specify the METHOD=ML option. Akaike's information criterion (AIC) (Akaike 1973, 1974, 1987) is a general criterion for estimating the best number of parameters to include in a model when maximum likelihood estimation is used. The number of factors that yields the smallest value of AIC is considered best. Like the chisquare test, AIC tends to include factors that are statistically significant but inconsequential for practical purposes.
- Schwarz's Bayesian Criterion, if you specify the METHOD=ML option. Schwarz's Bayesian Criterion (SBC) (Schwarz 1978) is another criterion, similar to AIC, for determining the best number of parameters. The number of factors that yields the smallest value of SBC is considered best; SBC seems to be less inclined to include trivial factors than either AIC or the chi-square test.
- Tucker and Lewis's Reliability Coefficient, if you specify the METHOD=ML option (Tucker and Lewis 1973)
- Squared Canonical Correlations, if you specify the METHOD=ML option. These are the same as the squared multiple correlations for predicting each factor from the variables.
- Coefficient Alpha for Each Factor, if you specify the METHOD=ALPHA option
- Eigenvectors, if you specify the EIGENVECTORS or ALL option, unless you also specify the METHOD=PATTERN or METHOD=SCORE option
- Eigenvalues of the (Weighted) (Reduced) (Image) Correlation or Covariance Matrix, unless you specify the METHOD=PATTERN or METHOD=SCORE option. Included are the Total and the Average of the eigenvalues, the Difference between successive eigenvalues, the Proportion of variation represented, and the Cumulative proportion of variation.
- the Factor Pattern, which is equal to both the matrix of standardized regression coefficients for predicting variables from common factors and the matrix of correlations between variables and common factors since the extracted factors are uncorrelated. Standard error estimates are included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER= option is specified with METHOD=ML.
- Variance explained by each factor, both Weighted and Unweighted, if variable weights are used
- Final Communality Estimates, including the Total communality; or Final Communality Estimates and Variable Weights, including the Total communality, both Weighted and Unweighted, if variable weights are used. Final communality estimates are the squared multiple correlations for predicting the variables from the estimated factors, and they can be obtained by taking the sum of squares of each row of the factor pattern, or a weighted sum of squares if variable weights are used.
- Residual Correlations with Uniqueness on the Diagonal, if you specify the RESIDUAL or ALL option
- Root Mean Square Off-diagonal Residuals, both Over-all and for each variable, if you specify the RESIDUAL or ALL option
- Partial Correlations Controlling Factors, if you specify the RESIDUAL or ALL option
- Root Mean Square Off-diagonal Partials, both Over-all and for each variable, if you specify the RESIDUAL or ALL option
- Plots of Factor Pattern for unrotated factors, if you specify the PREPLOT option. The number of plots is determined by the NPLOT= option.
- Variable Weights for Rotation, if you specify the NORM=WEIGHT option
- Factor Weights for Rotation, if you specify the HKPOWER= option
- Orthogonal Transformation Matrix, if you request an orthogonal rotation
- Rotated Factor Pattern, if you request an orthogonal rotation. Standard error estimates are included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER $=$ option is specified with METHOD=ML.
- Variance explained by each factor after rotation. If you request an orthogonal rotation and if variable weights are used, both weighted and unweighted values are produced.
- Target Matrix for Procrustean Transformation, if you specify the ROTATE=PROMAX or ROTATE=PROCRUSTES option
- the Procrustean Transformation Matrix, if you specify the ROTATE=PROMAX or ROTATE=PROCRUSTES option
- the Normalized Oblique Transformation Matrix, if you request an oblique rotation, which, for the option ROTATE=PROMAX, is the product of the prerotation and the Procrustes rotation
- Inter-factor Correlations, if you specify an oblique rotation. Standard error estimates are included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER= option is specified with METHOD=ML.
- Rotated Factor Pattern (Std Reg Coefs), if you specify an oblique rotation, giving standardized regression coefficients for predicting the variables from the factors. Standard error estimates are included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER $=$ option is specified with METHOD=ML.
- Reference Axis Correlations if you specify an oblique rotation. These are the partial correlations between the primary factors when all factors other than the two being correlated are partialed out.
- Reference Structure (Semipartial Correlations), if you request an oblique rotation. The reference structure is the matrix of semipartial correlations (Kerlinger and Pedhazur 1973) between variables and common factors, removing from each common factor the effects of other common factors. If the common factors are uncorrelated, the reference structure is equal to the factor pattern.
- Variance explained by each factor eliminating the effects of all other factors, if you specify an oblique rotation. Both Weighted and Unweighted values are produced if variable weights are used. These variances are equal to the (weighted) sum of the squared elements of the reference structure corresponding to each factor.
- Factor Structure (Correlations), if you request an oblique rotation. The (primary) factor structure is the matrix of correlations between variables and common factors. If the common factors are uncorrelated, the factor structure is equal to the factor pattern. Standard error estimates are included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER= option is specified with METHOD=ML.
- Variance explained by each factor ignoring the effects of all other factors, if you request an oblique rotation. Both Weighted and Unweighted values are produced if variable weights are used. These variances are equal to the (weighted) sum of the squared elements of the factor structure corresponding to each factor.
- Final Communality Estimates for the rotated factors if you specify the ROTATE= option. The estimates should equal the unrotated communalities.
- Squared Multiple Correlations of the Variables with Each Factor, if you specify the SCORE or ALL option, except for unrotated principal components
- Standardized Scoring Coefficients, if you specify the SCORE or ALL option
- Plots of the Factor Pattern for rotated factors, if you specify the PLOT option and you request an orthogonal rotation. The number of plots is determined by the NPLOT= option.
- Plots of the Reference Structure for rotated factors, if you specify the PLOT option and you request an oblique rotation. The number of plots is determined by the NPLOT= option. Included are the Reference Axis Correlation and the Angle between the Reference Axes for each pair of factors plotted.

If you specify the ROTATE=PROMAX option, the output includes results for both the prerotation and the Procrustes rotation.

ODS Table Names

PROC FACTOR assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the Table 33.3. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 33.3 ODS Tables Produced by PROC FACTOR

ODS Table Name	Description	Option
AlphaCoef	Coefficient alpha for each factor	METHOD=ALPHA
CanCorr	Squared canonical correlations	METHOD=ML
CondStdDev	Conditional standard deviations	SIMPLE with PARTIAL
ConvergenceStatus	Convergence status	METHOD=PRINIT, ALPHA, ML, or ULS
Corr	Correlations	CORR
Eigenvalues	Eigenvalues	default, SCREE
Eigenvectors	Eigenvectors	EIGENVECTORS
FactorWeightRotate	Factor weights for rotation	HKPOWER=
FactorPattern	Factor pattern	default
FactorStructure	Factor structure	ROTATE $=$ any oblique rotation
FinalCommun	Final communalities	default
FinalCommunWgt	Final communalities with weights	METHOD=ML or ALPHA
FitMeasures	Measures of fit	METHOD=ML
ImageCoef	Image coefficients	METHOD=IMAGE
ImageCov	Image covariance matrix	METHOD=IMAGE
ImageFactors	Image factor matrix	METHOD=IMAGE
InputFactorPattern	Input factor pattern	METHOD=PATTERN with PRINT or ALL
InputScoreCoef	Standardized input scoring coefficients	METHOD=SCORE with PRINT or ALL
InterFactorCorr	Interfactor correlations	ROTATE $=$ any oblique rotation
InvCorr	Inverse correlation matrix	ALL
IterHistory	Iteration history	METHOD=PRINIT, ALPHA, ML, or ULS
MultipleCorr	Squared multiple correlations	METHOD=IMAGE or METHOD=HARRIS
NormObliqueTrans	Normalized oblique transformation matrix	ROTATE $=$ any oblique rotation
ObliqueRotFactPat	Rotated factor pattern	ROTATE= any oblique rotation
ObliqueTrans	Oblique transformation matrix	HKPOWER=
OrthRotFactPat	Rotated factor pattern	ROTATE $=$ any orthogonal rotation
OrthTrans	Orthogonal transformation matrix	ROTATE $=$ any orthogonal rotation
ParCorrControlFactor	Partial correlations controlling factors	RESIDUAL

Table 33.3 continued

ODS Table Name	Description	Option
ParCorrControlVar	Partial correlations controlling other variables	MSA
PartialCorr	Partial correlations	MSA, CORR with PARTIAL
PriorCommunalEst	Prior communality estimates	PRIORS $=$, METHOD=ML or ALPHA
ProcrustesTarget	Target matrix for Procrustean transformation	ROTATE=PROCRUSTES, ROTATE=PROMAX
ProcrustesTrans	Procrustean transformation matrix	ROTATE=PROCRUSTES, ROTATE=PROMAX
RMSOffDiagPartials	Root mean square off-diagonal partials	RESIDUAL
RMSOffDiagResids	Root mean square off-diagonal residuals	RESIDUAL
ReferenceAxisCorr	Reference axis correlations	ROTATE $=$ any oblique rotation
ReferenceStructure	Reference structure	ROTATE $=$ any oblique rotation
ResCorrUniqueDiag	Residual correlations with uniqueness on the diagonal	RESIDUAL
SamplingAdequacy	Kaiser's measure of sampling adequacy	MSA
SignifTests	Significance tests	METHOD=ML
SimpleStatistics	Simple statistics	SIMPLE
StdScoreCoef	Standardized scoring coefficients	SCORE
VarExplain	Variance explained	default
VarExplainWgt	Variance explained with weights	METHOD=ML, or ALPHA
VarFactorCorr	Squared multiple correlations of the variables with each factor	SCORE
VarWeightRotate	Variable weights for rotation	NORM=WEIGHT, ROTATE=

ODS Graphics

To request graphics with PROC FACTOR, you must first enable ODS Graphics by specifying the ods graphics on statement. See Chapter 21, "Statistical Graphics Using ODS," for more information. The names of the graphs that PROC FACTOR generates are listed in Table 33.4, along with the required statements and options.

Table 33.4 ODS Graphics Produced by PROC FACTOR

ODS Graph Name	Plot Description	Option
PatternPlot	Rotated factor pattern	PLOTS=LOADINGS
InitPatternPlot	Initial factor pattern	PLOTS=INITLOADINGS
InitRefStructurePlot	Initial reference structures	PLOTS=INITLOADINGS and
PLOTREF		
PrePatternPlot	Prerotated factor pattern	PLOTS=PRELOADINGS
PrefStructurePlot	Prerotated reference structures	PLOTS=PRELOADINGS and RefStructurePlot
Rotated reference structures	PLOTREF PLOTS=LOADINGS and ScreePlot	Scree and variance explained plots
VariancePlot	Plot of explained variance	PLOTS=SCREE

Examples: FACTOR Procedure

Example 33.1: Principal Component Analysis

This example analyzes socioeconomic data provided by Harman (1976). The five variables represent total population, median school years, total employment, miscellaneous professional services, and median house value. Each observation represents one of twelve census tracts in the Los Angeles Standard Metropolitan Statistical Area.

The first analysis is a principal component analysis. Simple descriptive statistics and correlations are also displayed. The following statements produce Output 33.1.1:

```
data SocioEconomics;
    title 'Five Socioeconomic Variables';
    title2 'See Page 14 of Harman: Modern Factor Analysis, 3rd Ed';
    input Population School Employment Services HouseValue;
    datalines;
\begin{tabular}{llll}
5700 & 12.8 & 2500 & 250
\end{tabular}
\begin{tabular}{lllll}
1000 & 10.9 & 600 & 10 & 10000
\end{tabular}
\(3400 \quad 8.8 \quad 1000 \quad 10 \quad 9000\)
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 % 12000
9400 11.4 4000 100 13000
;
title3 'Principal Component Analysis';
proc factor data=SocioEconomics simple corr;
run;
```

There are two large eigenvalues, 2.8733 and 1.7967 , which together account for 93.4% of the standardized variance. Thus, the first two principal components provide an adequate summary of the data for most purposes. Three components, explaining 97.7% of the variation, should be sufficient for almost any application. PROC FACTOR retains two components on the basis of the eigenvalues-greater-than-one rule since the third eigenvalue is only 0.2148 .

The first component has large positive loadings for all five variables. The correlation with Services (0.9324) is especially high. The second component is a contrast of Population (0.8064) and Employment (0.7261) against School (-0.5448) and HouseValue (-0.5582), with a very small loading on Services (-0.1043).

Output 33.1.1 Principal Component Analysis

Output 33.1.1 continued

The final communality estimates show that all the variables are well accounted for by two components, with final communality estimates ranging from 0.8802 for Services to 0.9878 for Population.

Example 33.2: Principal Factor Analysis

This example uses the data presented in Example 33.1, and performs a principal factor analysis with squared multiple correlations for the prior communality estimates (PRIORS=SMC). Unlike Example 33.1, which analyzes the principal components, the current analysis is based on a common factor model.

To help determine whether the common factor model is appropriate, Kaiser's measure of sampling adequacy (MSA) is requested, and the residual correlations and partial correlations are computed (RESIDUAL).

The ROTATE= and REORDER options are specified to enhance factor interpretability. The ROTATE=PROMAX option produces an orthogonal varimax prerotation (default) followed by an oblique Procrustes rotation, and the REORDER option reorders the variables according to their largest factor loadings. An OUTSTAT= data set is created by PROC FACTOR and displayed in Output 33.2.12.

PROC FACTOR can produce high-quality graphs that are very useful to interpret the factor solutions. To request these graphs, you must first enable ODS Graphics by specifying the ods
graphics on statement, as shown in the following code. All ODS graphs in PROC FACTOR are requested with the PLOTS= option. In this example, a scree plot is requested to help you determine the number of factors. Loading plots for the initial unrotated solution, prerotated (varimax) solution, and promax-rotated solution are also requested to help you visualize the patterns of factor loadings in various stages.

```
ods graphics on;
title3 'Principal Factor Analysis with Promax Rotation';
proc factor data=SocioEconomics
    priors=smc msa residual
    rotate=promax reorder
    outstat=fact_all
    plots=(scree initloadings preloadings loadings);
run;
ods graphics off;
```

Output 33.2.1 displays the results of the principal factor extraction.
Output 33.2.1 Principal Factor Analysis

Output 33.2.1 continued

Eigenvalues of the Reduced Correlation Matrix:$\text { Total }=4.39280116 \text { Average }=0.87856023$				
	Eigenvalue	Difference	Proportion	Cumulative
1	2.73430084	1.01823217	0.6225	0.6225
2	1.71606867	1.67650586	0.3907	1.0131
3	0.03956281	0.06408626	0.0090	1.0221
4	-. 02452345	0.04808427	-0.0056	1.0165
5	-. 07260772		-0.0165	1.0000

If the data are appropriate for the common factor model, the partial correlations controlling the other variables should be small compared to the original correlations. The partial correlation between the variables School and HouseValue, for example, is 0.65 , slightly less than the original correlation of 0.86 . The partial correlation between Population and School is -0.54 , which is much larger in absolute value than the original correlation; this is an indication of trouble. Kaiser's MSA is a summary, for each variable and for all variables together, of how much smaller the partial correlations are than the original correlations. Values of 0.8 or 0.9 are considered good, while MSAs below 0.5 are unacceptable. The variables Population, School, and Employment have very poor MSAs. Only the Services variable has a good MSA. The overall MSA of 0.58 is sufficiently poor that additional variables should be included in the analysis to better define the common factors. A commonly used rule is that there should be at least three variables per factor. In the following analysis, there seems to be two common factors in these data, so more variables are needed for a reliable analysis.

The SMCs are all fairly large; hence, the factor loadings do not differ greatly from those in the principal component analysis.

The eigenvalues in Output 33.2 .1 show clearly that two common factors are present. The first two largest positive eigenvalues account for 101.31% of the common variance. This is possible because the reduced correlation matrix, in general, is not necessarily positive definite, and negative eigenvalues for the matrix are possible. These cumulative proportions of common variance explained by factors are plotted in the right panel of Output 33.2.2, which shows that the curve flattens out essentially after the second factor. Showing in the left panel of Output 33.2.2 is the scree plot, which displays a sharp bend at the third eigenvalue, reinforcing the conclusion that two common factors are present.

Output 33.2.2 Scree and Variance Explained Plots

As displayed in Output 33.2.3, the principal factor pattern is similar to the principal component pattern seen in Example 33.1. For example, the variable Services has the largest loading on the first factor, and the Population variable has the smallest. The variables Population and Employment have large positive loadings on the second factor, and the HouseValue and School variables have large negative loadings.

Output 33.2.3 Initial Factor Pattern Matrix and Communalities

Factor Pattern				
		Factor1	Factor2	
	Services	0.87899	-0.15847	
	HouseValue	0.74215	-0.57806	
	Employment	0.71447	0.67936	
	School	0.71370	-0.55515	
	Population	0.62533	0.76621	
Variance Explained by Each Factor				
Factor1 Factor2				
2.73430081 .7160687				
Final Communality Estimates: Total $=4.450370$				
Population	School	Employment	Services	HouseValue
0.97811334	0.81756387	0.97199928	0.79774304	0.88494998

The final communality estimates are all fairly close to the priors. Only the communality for the variable HouseValue increased appreciably, from 0.847 to 0.885 . Nearly 100% of the common variance is accounted for. The residual correlations (off-diagonal elements) are low, the largest being 0.03 (Output 33.2.4). The partial correlations are not quite as impressive, since the uniqueness values are also rather small. These results indicate that the SMCs are good but not quite optimal communality estimates.

Output 33.2.4 Residual and Partial Correlations

Residual Correlations With Uniqueness on the Diagonal					
	Population	School	Employment	Services	HouseValue
Population	0.02189	-0.01118	0.00514	0.01063	0.00124
School	-0.01118	0.18244	0.02151	-0.02390	0.01248
Employment	0.00514	0.02151	0.02800	-0.00565	-0.01561
Services	0.01063	-0.02390	-0.00565	0.20226	0.03370
HouseValue	0.00124	0.01248	-0.01561	0.03370	0.11505
Root Mean Square Off-Diagonal Residuals: Overall $=0.01693282$					
Populati		Empl	nent	ices	useValue
0.008153	0.0181	0.01	2764 0.	1737	01960158
Partial Correlations Controlling Factors					
	Population	School	Employment	Services	HouseValue
Population	1.00000	-0.17693	0.20752	0.15975	0.02471
School	-0.17693	1.00000	0.30097	-0.12443	0.08614
Employment	0.20752	0.30097	1.00000	-0.07504	-0.27509
Services	0.15975	-0.12443	-0.07504	1.00000	0.22093
HouseValue	0.02471	0.08614	-0.27509	0.22093	1.00000
Root Mean Square Off-Diagonal Partials: Overall $=0.18550132$					
Populati	School Empl		ment Services		HouseValue
0.158508	0.19025867 0.231		1838 0.15447043		0.18201538

As displayed in Output 33.2.5, the unrotated factor pattern reveals two tight clusters of variables, with the variables HouseValue and School at the negative end of Factor2 axis and the variables Employment and Population at the positive end. The Services variable is in between but closer to the HouseValue and School variables. A good rotation would put the reference axes through the two clusters.

Output 33.2.5 Unrotated Factor Pattern Plot

Output 33.2.6 and Output 33.2.7 display the results of the varimax rotation. This rotation puts one axis through the variables HouseValue and School but misses the Population and Employment variables slightly.

Output 33.2.6 Varimax Rotation: Transform Matrix and Rotated Pattern

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Prerotation Method: Varimax

Orthogonal Transformation Matrix

12
1
0.78895
0.61446
2

$$
-0.61446 \quad 0.78895
$$

Output 33.2.6 continued

Rotated Factor Pattern				
		Factor1	Factor2	
	HouseValue	0.94072	-0.00004	
	School	0.90419	0.00055	
	Services	0.79085	0.41509	
	Population	0.02255	0.98874	
	Employment	0.14625	0.97499	
Variance Explained by Each Factor				
	Factor1 Factor			
	2.3498567 2.1005128			
	Final Communality Estimates: Total $=4.450370$			
Population	School	Employment	Services	HouseValue
0.97811334	0.81756387	0.97199928	0.79774304	0.88494998

Output 33.2.7 Varimax-Rotated Factor Loadings

An alternative to the scatter plot of factor loadings as shown in Output 33.2.7 is the so-called vector plot of loadings. The vector plot is requested with the suboption VECTOR in the PLOTS= option. For example:

```
plots=preloadings(vector)
```

This will generate the vector plot of loadings as shown in Output 33.2.8.

Output 33.2.8 Varimax-Rotated Factor Loadings: Vector Plot

The results of oblique promax rotation are shown in Output 33.2.9 and Output 33.2.10. The corresponding plot of factor loadings is shown in Output 33.2.11.

Output 33.2.9 Promax Rotation: Procrustean Target and Transformation

Output 33.2.9 continued

Output 33.2.10 Promax Rotation: Promax-Rotated Factor Solution

Inter-Factor Correlations		
	Factor1	Factor2
Factor1	1.00000	0.20188
Factor2	0.20188	1.00000
Rotated Factor Pattern (Standardized Regression Coefficients)		
	Factor1	Factor2
HouseValue	0.95558485	-0.0979201
School	0.91842142	-0.0935214
Services	0.76053238	0.33931804
Population	-0.0790832	1.00192402
Employment	0.04799	0.97509085
Reference Axis Correlations		
	Factor1	Factor2
Factor1	1.00000	-0.20188
Factor2	-0.20188	1.00000
Reference Structure (Semipartial Correlations)		
	Factor1	Factor2
HouseValue	0.93591	-0.09590
School	0.89951	-0.09160
Services	0.74487	0.33233
Population	-0.07745	0.98129
Employment	0.04700	0.95501

Output 33.2.10 continued

Output 33.2.11 Promax-Rotated Factor Loadings

As shown in Output 33.2.11, the promax solution places an axis through the variables Population and Employment but misses the HouseValue and School variables. Since an independent-cluster solution would be possible if it were not for the variable Services, a Harris-Kaiser rotation weighted by the Cureton-Mulaik technique could be used. Rather than reanalyze the entire problem with the Harris-Kaiser rotation, you can simply use the preceding results stored in the OUTSTAT= data set.

First, the OUTSTAT= data set is printed using this code:

```
title3 'Factor Output Data Set';
proc print data=fact_all;
run;
```

The output data set is displayed in Output 33.2.12.

Output 33.2.12 Output Data Set

Obs	_TYPE	_NAME	Five Socioec Harman: Factor	nomic Va ern Fact put Data	iables r Analysis, Set	3rd Ed	House Value
			Population	School	Employment	Services	
1	MEAN		6241.67	11.4417	2333.33	120.833	17000.00
2	STD		3439.99	1.7865	1241.21	114.928	6367.53
3	N		12.00	12.0000	12.00	12.000	12.00
4	CORR	Population	1.00	0.0098	0.97	0.439	0.02
5	CORR	School	0.01	1.0000	0.15	0.691	0.86
6	CORR	Employment	0.97	0.1543	1.00	0.515	0.12
7	CORR	Services	0.44	0.6914	0.51	1.000	0.78
8	CORR	HouseValue	0.02	0.8631	0.12	0.778	1.00
9	COMMUNAL		0.98	0.8176	0.97	0.798	0.88
10	PRIORS		0.97	0.8223	0.97	0.786	0.85
11	EIGENVAL		2.73	1.7161	0.04	-0.025	-0.07
12	UNROTATE	Factor1	0.63	0.7137	0.71	0.879	0.74
13	UNROTATE	Factor2	0.77	-0.5552	0.68	-0.158	-0.58
14	RESIDUAL	Population	0.02	-0.0112	0.01	0.011	0.00
15	RESIDUAL	School	-0.01	0.1824	0.02	-0.024	0.01
16	RESIDUAL	Employment	0.01	0.0215	0.03	-0.006	-0.02
17	RESIDUAL	Services	0.01	-0.0239	-0.01	0.202	0.03
18	RESIDUAL	HouseValue	0.00	0.0125	-0.02	0.034	0.12
19	PRETRANS	Factor1	0.79	-0.6145	.	.	.
20	PRETRANS	Factor2	0.61	0.7889	-	.	.
21	PREROTAT	Factor1	0.02	0.9042	0.15	0.791	0.94
22	PREROTAT	Factor2	0.99	0.0006	0.97	0.415	-0.00
23	TRANSFOR	Factor1	0.74	-0.7055	.	.	.
24	TRANSFOR	Factor2	0.54	0.8653	-	.	-
25	FCORR	Factor1	1.00	0.2019	.	.	-
26	FCORR	Factor2	0.20	1.0000	.	-	-
27	PATTERN	Factor1	-0.08	0.9184	0.05	0.761	0.96
28	PATTERN	Factor2	1.00	-0.0935	0.98	0.339	-0.10
29	RCORR	Factor1	1.00	-0.2019	.	.	.
30	RCORR	Factor2	-0.20	1.0000	.	.	-
31	REFERENC	Factor1	-0.08	0.8995	0.05	0.745	0.94
32	REFERENC	Factor2	0.98	-0.0916	0.96	0.332	-0.10
33	STRUCTUR	Factor1	0.12	0.8995	0.24	0.829	0.94
34	STRUCTUR	Factor2	0.99	0.0919	0.98	0.493	0.09

This output data set can be used for Harris-Kaiser rotation by deleting observations with _TYPE_='PATTERN' and _TYPE_='FCORR', which are for the promax-rotated factors, and changing _TYPE_='UNROTATE' to _TYPE_='PATTERN'. In this way, the initial orthogonal factor pattern matrix is saved in the observations with _TYPE_='PATTERN'. The following factor analysis will then read in the factor pattern in the fact2 data set as an initial factor solution, which will then be rotated by the Harris-Kaiser rotation with Cureton-Mulaik weights.

The following statements produce Output 33.2.13:

```
data fact2(type=factor);
    set fact_all;
    if _TYPE_ in('PATTERN' 'FCORR') then delete;
    if _TYPE_='UNROTATE' then _TYPE_='PATTERN';
ods graphics on;
title3 'Harris-Kaiser Rotation with Cureton-Mulaik Weights';
proc factor rotate=hk norm=weight reorder
    plots=loadings;
run;
ods graphics off;
```

The results of the Harris-Kaiser rotation are displayed in Output 33.2.13.
Output 33.2.13 Harris-Kaiser Rotation

Five Socioeconomic Variables See Page 14 of Harman: Modern Factor Analysis, 3rd Ed Harris-Kaiser Rotation with Cureton-Mulaik Weights The FACTOR Procedure Rotation Method: Harris-Kaiser (hkpower $=0$) Variable Weights for Rotation				
Population	School	Employment	Services	HouseValue
0.95982747	0.93945424	0.99746396	0.12194766	0.94007263
Oblique Transformation Matrix				
	1	0.73537	0.61899	
	2	-0.68283	0.78987	
Inter-Factor Correlations				
		Factor1	Factor2	
	Factor1	1.00000	0.08358	
	Factor2	0.08358	1.00000	

Output 33.2.13 continued

A plot of the rotated loadings is shown in Output 33.2.14.
Output 33.2.14 Factor Pattern with Harris-Kaiser Rotation

In the results of the Harris-Kaiser rotation, the variable Services receives a small weight, and the axes are placed as desired.

Example 33.3: Maximum Likelihood Factor Analysis

This example uses maximum likelihood factor analyses for one, two, and three factors. It is already apparent from the principal factor analysis that the best number of common factors is almost certainly two. The one- and three-factor ML solutions reinforce this conclusion and illustrate some of the numerical problems that can occur. The following statements produce Output 33.3.1 through Output 33.3.3:

```
title3 'Maximum Likelihood Factor Analysis with One Factor';
proc factor data=SocioEconomics method=ml heywood n=1;
run;
title3 'Maximum Likelihood Factor Analysis with Two Factors';
proc factor data=SocioEconomics method=ml heywood n=2;
run;
title3 'Maximum Likelihood Factor Analysis with Three Factors';
proc factor data=SocioEconomics method=ml heywood n=3;
run;
```

Output 33.3.1 displays the results of the analysis with one factor.

Output 33.3.1 Maximum Likelihood Factor Analysis

Output 33.3.1 continued

Output 33.3.1 continued

Variance Explained by Each Factor		
Factor	Weighted	Unweighted
Factor1	17.8010629	2.24926004
Final Communali Total Communality: Weig	Estimates a $\mathrm{ed}=17.8010$	Variable Weights Unweighted $=2.249260$
Variable	Communality	Weight
Population	0.94565561	18.4011648
School	0.02380349	1.0243839
Employment	1.00000000	Infty
Services	0.26493499	1.3604239
HouseValue	0.01486595	1.0150903

The solution on the second iteration is so close to the optimum that PROC FACTOR cannot find a better solution; hence you receive this message:

```
Convergence criterion satisfied.
```

When this message appears, you should try rerunning PROC FACTOR with different prior communality estimates to make sure that the solution is correct. In this case, other prior estimates lead to the same solution or possibly to worse local optima, as indicated by the information criteria or the chi-square values.

The variable Employment has a communality of 1.0 and, therefore, an infinite weight that is displayed next to the final communality estimate as a missing/infinite value. The first eigenvalue is also infinite. Infinite values are ignored in computing the total of the eigenvalues and the total final communality.

Output 33.3.2 displays the results of the analysis with two factors. The analysis converges without incident. This time, however, the Population variable is a Heywood case.

Output 33.3.2 Maximum Likelihood Factor Analysis: Two Factors

Five Socioeconomic Variables See Page 14 of Harman: Modern Factor Analysis, 3rd Ed Maximum Likelihood Factor Analysis with Two Factors The FACTOR Procedure Initial Factor Method: Maximum Likelihood Prior Communality Estimates: SMC				
Population	School	Employment	Services	HouseValue
0.96859160	0.82228514	0.96918082	0.78572440	0.84701921

Output 33.3.2 continued

Output 33.3.2 continued

The results of the three-factor analysis are shown in Output 33.3.3.

Output 33.3.3 Maximum Likelihood Factor Analysis: Three Factors

Output 33.3.3 continued

Output 33.3.3 continued

Final Communality Estimates and Variable Weights Total Communality: Weighted = 96.137063 Unweighted = 4.640858		
Variable	Communality	Weight
Population	0.98201660	55.6066901
School	0.88585165	8.7607194
Employment	1.00000000	Infty
Services	0.80564301	5.1444261
HouseValue	0.96734687	30.6251078

In the results, a warning message is displayed:

```
WARNING: Too many factors for a unique solution.
```

The number of parameters in the model exceeds the number of elements in the correlation matrix from which they can be estimated, so an infinite number of different perfect solutions can be obtained. The criterion approaches zero at an improper optimum, as indicated by this message:

```
Converged, but not to a proper optimum.
```

The degrees of freedom for the chi-square test are -2 , so a probability level cannot be computed for three factors. Note also that the variable Employment is a Heywood case again.

The probability levels for the chi-square test are 0.0001 for the hypothesis of no common factors, 0.0002 for one common factor, and 0.1382 for two common factors. Therefore, the twofactor model seems to be an adequate representation. Akaike's information criterion and Schwarz's Bayesian criterion attain their minimum values at two common factors, so there is little doubt that two factors are appropriate for these data.

Example 33.4: Using Confidence Intervals to Locate Salient Factor Loadings

This example illustrates how you can use the standard errors and confidence intervals to understand the pattern of factor loadings under the maximum likelihood estimation. There are nine tests and you want a three-factor solution $(\mathrm{N}=3)$ for a correlation matrix based on 200 observations. The following statements define the input data set and specify the desirable analysis by the FACTOR procedure:

```
data test(type=corr);
    title 'Quartimin-Rotated Factor Solution with Standard Errors';
    input _name_ $ test1-test9;
    _type_ = 'corr';
    datalines;
Test1 1 . 561 . 602 . 290 . 404 . 328 . 367 . 179 -. 268
Test2 . 561 1 . 743 . 414 . 526 . 442 . 523 . 289 -. 399
Test3 . }602 .743 1 . 286 . 343 . 361 . 679 . 456 -. 532
Test4 . 290 . 414 . 286 1 . 677 . 446 . 412 . 400 -. 491
Test5 . 404 . 526 . 343 . 677 1 . 584 . 408 . 299 -. 466
Test6 . 328 . 442 . 361 . 446 . 584 1 . 333 . 178 -. . 306
Test7 . 367 . 523 . 679 . 412 . 408 . 333 1 . 711 -. 760
Test8 . 179 . 289 . 456 . 400 . 299 . 178 . 711 1 -. 725
Test9 -. 268-. 399 -. 532 -. 491 -. 466 -. 306 -. . % -. . %25 1
;
title2 'A nine-variable-three-factor example';
proc factor data=test method=ml reorder rotate=quartimin
    nobs=200 n=3 se cover=.45 alpha=.1;
run;
```

In the PROC FACTOR statement, you apply quartimin rotation with (default) Kaiser normalization. You define loadings with magnitudes greater than 0.45 to be salient (COVER=0.45) and use 90% confidence intervals (ALPHA=0.1) to judge the salience. The REORDER option is specified so that variables that have similar loadings with factors are clustered together.

After the quartimin rotation, the correlation matrix for factors is shown in Output 33.4.1.

Output 33.4.1 Quartimin-Rotated Factor Solution with Standard Errors

The factors are medium to highly correlated. The confidence intervals seem to be very wide, suggesting that the estimation of factor correlations might not be very accurate for this sample size. For example, the 90% confidence interval for the correlation between Factor1 and Factor2 is (0.30 , 0.51), a range of 0.21 . You might need a larger sample to get a narrower interval, or you might need a better estimation.

Next, coverage displays for factor loadings are shown in Output 33.4.2.

Output 33.4.2 Using the Rotated Factor Pattern to Interpret the Factors

The coverage displays in Output 33.4.2 show that Test8, Test7, and Test9 have salient relationships with Factor1. The coverage displays are either ' $0 *$ []' or ' $[$]* 0 ', indicating that the entire 90% confidence intervals for the corresponding loadings are beyond the salience value at 0.45 . On the other hand, the coverage display for Test3 on Factor1 is ' $0[$]'. This indicates that even though the loading estimate is significantly larger than zero, it is not large enough to be salient. Similarly, Test3, Test2, and Test1 have salient relationships with Factor2, while Test5 and Test4 have salient relationships with Factor3. For Test6, its relationship with Factor3 is a little bit ambiguous; the 90% confidence interval approximately covers values between 0.40 and 0.64 . This means that the population value might have been smaller or larger than 0.45 . It is marginal evidence for a salient relationship.

For oblique factor solutions, some researchers prefer to examine the factor structure loadings, which represent correlations, for determining salient relationships. In Output 33.4.3, the factor structure loadings and the associated standard error estimates and coverage displays are shown.

Output 33.4.3 Using the Factor Structure to Interpret the Factors

| ```Factor Structure (Correlations) With 90% confidence limits; Cover \|*| = 0.45? Estimate/StdErr/LowerCL/UpperCL/Coverage Display``` | | | |
| :---: | :---: | :---: | :---: |
| | Factor1 | Factor2 | Factor3 |
| test 8 | 0.84771 | 0.30847 | 0.30994 |
| | 0.02871 | 0.06593 | 0.06263 |
| | 0.79324 | 0.19641 | 0.20363 |
| | 0.88872 | 0.41257 | 0.40904 |
| | 0* [] | O[] * | O[] * |
| test 7 | 0.84894 | 0.58033 | 0.41970 |
| | 0.02688 | 0.05265 | 0.06060 |
| | 0.79834 | 0.48721 | 0.31523 |
| | 0.88764 | 0.66041 | 0.51412 |
| | 0* [] | 0* [] | 0 [*] |
| test9 | -0.86791 | -0.42248 | -0.48396 |
| | 0.02522 | 0.06187 | 0.05504 |
| | -0.90381 | -0.51873 | -0.56921 |
| | -0.81987 | -0.31567 | -0.38841 |
| | [] * 0 | [*] 0 | [* 0 |
| test 3 | 0.57790 | 0.93325 | 0.33738 |
| | 0.05069 | 0.02953 | 0.06779 |
| | 0.48853 | 0.86340 | 0.22157 |
| | 0.65528 | 0.96799 | 0.44380 |
| | 0* [] | 0* [] | 0 [] * |
| test2 | 0.38449 | 0.81615 | 0.54535 |
| | 0.06143 | 0.03106 | 0.05456 |
| | 0.27914 | 0.75829 | 0.44946 |
| | 0.48070 | 0.86126 | 0.62883 |
| | 0 [*] | 0* [] | 0 [*] |
| test1 | 0.24345 | 0.67351 | 0.41162 |
| | 0.06864 | 0.04284 | 0.05995 |
| | 0.12771 | 0.59680 | 0.30846 |
| | 0.35264 | 0.73802 | 0.50522 |
| | O[]* | 0* [] | 0 [*] |
| test5 | 0.37163 | 0.46498 | 0.93132 |
| | 0.06092 | 0.04979 | 0.03277 |
| | 0.26739 | 0.37923 | 0.85159 |
| | 0.46727 | 0.54282 | 0.96894 |
| | 0 [*] | 0 [*] | 0* [] |
| test 4 | 0.45248 | 0.33583 | 0.72927 |
| | 0.05876 | 0.06289 | 0.04061 |
| | 0.35072 | 0.22867 | 0.65527 |
| | 0.54367 | 0.43494 | 0.78941 |
| | 0 [*] | O[]* | 0* [] |
| test 6 | 0.25122 | 0.45137 | 0.61837 |
| | 0.07140 | 0.05858 | 0.05051 |
| | 0.13061 | 0.34997 | 0.52833 |
| | 0.36450 | 0.54232 | 0.69465 |
| | 0 [] * | 0 [*] | 0* [] |

The interpretations based on the factor structure matrix do not change much from that based on the factor loadings except for Test3 and Test9. Test9 now has a salient correlation with Factor3. For Test3, it has salient correlations with both Factor1 and Factor2. Fortunately, there are still tests that have salient correlations only with either Factor1 or Factor2 (but not both). This would make interpretations of factors less problematic.

References

Akaike, H. (1973), "Information Theory and the Extension of the Maximum Likelihood Principle," in Second International Symposium on Information Theory, ed. V. N. Petrov and F. Csaki, Budapest: Akailseoniai-Kiudo, 267-281.

Akaike, H. (1974), "A New Look at the Statistical Identification Model," IEEE Transactions on Automatic Control, 19, 716-723.

Akaike, H. (1987), "Factor Analysis and AIC," Psychometrika 52, 317-332.
Archer, C. O. and Jennrich, R. I. (1973), "Standard Errors for Orthogonally Rotated Factor Loadings," Psychometrika, 38, 581-592.

Bickel, P. J. and Doksum, K. A. (1977), Mathematical Statistics, San Francisco: Holden-Day.
Browne, M. W. (1982), "Covariance Structures," in Topics in Applied Multivariate Analysis, ed. D. M. Hawkins, Cambridge: Cambridge University Press, 72-141.

Browne, M. W., Cudeck, R., Tateneni, K., and Mels, G. (2004), CEFA: Comprehensive Exploratory Factor Analysis, Version 2.00. http://quantrm2.psy.ohio-state.edu/browne/software.php

Cattell, R. B. (1966), "The Scree Test for the Number of Factors," Multivariate Behavioral Research, 1, 245-276.

Cattell, R. B. (1978), The Scientific Use of Factor Analysis, New York: Plenum.
Cattell, R. B. and Vogelman, S. (1977), "A Comprehensive Trial of the Scree and KG Criteria for Determining the Number of Factors," Multivariate Behavioral Research, 12, 289-325.

Cerny, B. A. and Kaiser, H. F. (1977), "A Study of a Measure of Sampling Adequacy for FactorAnalytic Correlation Matrices," Multivariate Behavioral Research, 12, 43-47.

Crawford, C. B. and Ferguson, G. A. (1970), "A General Rotation Criterion and Its Use in Orthogonal Rotation," Psychometrika, 35, 321-332.

Cureton, E. E. (1968), A Factor Analysis of Project TALENT Tests and Four Other Test Batteries (Interim Report 4 to the U.S. Office of Education, Cooperative Research Project No. 3051), Palo Alto, CA: Project TALENT Office, American Institutes for Research and University of Pittsburgh.

Cureton, E. E. and Mulaik, S. A. (1975), "The Weighted Varimax Rotation and the Promax Rotation," Psychometrika, 40, 183-195.

Dziuban, C. D. and Harris, C. W. (1973), "On the Extraction of Components and the Applicability of the Factor Model," American Educational Research Journal, 10, 93-99.

Fuller (1987), Measurement Error Models, New York: John Wiley \& Sons.
Geweke, J. F. and Singleton, K. J. (1980), "Interpreting the Likelihood Ratio Statistic in Factor Models When Sample Size Is Small," Journal of the American Statistical Association, 75, 133137.

Gorsuch, R. L. (1974), Factor Analysis, Philadelphia: W. B. Saunders.
Harman, H. H. (1976), Modern Factor Analysis, Third Edition, Chicago: University of Chicago Press.

Harris, C. W. (1962), "Some Rao-Guttman Relationships," Psychometrika, 27, 247-263.
Hayashi, K. and Yung, Y. F. (1999), "Standard Errors for the Class of Orthomax-Rotated Factor Loadings: Some Matrix Results," Psychometrika, 64, 451-460.

Horn, J. L. and Engstrom, R. (1979), "Cattell's Scree Test in Relation to Bartlett's Chi-Square Test and Other Observations on the Number of Factors Problem," Multivariate Behavioral Research, 14, 283-300.

Jennrich, R. I. (1973), "Standard Errors for Obliquely Rotated Factor Loadings," Psychometrika, 38, 593-604.

Jennrich, R. I. (1974), "Simplified Formulae for Standard Errors in Maximum-Likelihood Factor Analysis," British Journal of Mathematical and Statistical Psychology, 27, 122-131.

Jöreskog, K. G. (1962), "On the Statistical Treatment of Residuals in Factor Analysis," Psychometrika, 27, 335-354.

Jöreskog, K. G. (1977), "Factor Analysis by Least-Squares and Maximum Likelihood Methods," in Statistical Methods for Digital Computers, ed. K. Enslein, A. Ralston, and H. S. Wilf, New York: John Wiley \& Sons.

Kaiser, H. F. (1963), "Image Analysis," in Problems in Measuring Change, ed. C. W. Harris, Madison: University of Wisconsin Press.

Kaiser, H. F. (1970), "A Second Generation Little Jiffy," Psychometrika, 35, 401-415.
Kaiser, H. F. and Rice, J. (1974), "Little Jiffy, Mark IV," Educational and Psychological Measurement, 34, 111-117.

Kerlinger, F. N. and Pedhazur, E. J. (1973), Multiple Regression in Behavioral Research, New York: Holt, Rinehart \& Winston.

Kim, J. O. and Mueller, C. W. (1978a), Introduction to Factor Analysis: What It Is and How To Do It, Sage University Paper Series on Quantitative Applications in the Social Sciences, series no. 07-013, Beverly Hills, CA: Sage Publications.

Kim, J. O. and Mueller, C. W. (1978b), Factor Analysis: Statistical Methods and Practical Issues,

Sage University Paper Series on Quantitative Applications in the Social Sciences, series no. 07-014, Beverly Hills, CA: Sage Publications.

Lawley, D. N. and Maxwell, A. E. (1971), Factor Analysis as a Statistical Method, New York: Macmillan.

Lee, H. B. and Comrey, A. L. (1979), "Distortions in a Commonly Used Factor Analytic Procedure," Multivariate Behavioral Research, 14, 301-321.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, London: Academic Press.
Morrison, D. F. (1976), Multivariate Statistical Methods, Second Edition, New York: McGraw-Hill.
Mulaik, S. A. (1972), The Foundations of Factor Analysis, New York: McGraw-Hill.
Rao, C. R. (1955), "Estimation and Tests of Significance in Factor Analysis," Psychometrika, 20, 93-111.

Schwarz, G. (1978), "Estimating the Dimension of a Model," Annals of Statistics, 6, 461-464.
Spearman, C. (1904), "General Intelligence Objectively Determined and Measured," American Journal of Psychology, 15, 201-293.

Stewart, D. W. (1981), "The Application and Misapplication of Factor Analysis in Marketing Research," Journal of Marketing Research, 18, 51-62.

Tucker, L. R. and Lewis, C. (1973), "A Reliability Coefficient for Maximum Likelihood Factor Analysis," Psychometrika, 38, 1-10.

Yung, Y. F. and Hayashi, K. (2001), "A Computationally Efficient Method for Obtaining Standard Error Estimates for the Promax and Related Solutions," British Journal of Mathematical and Statistical Psychology, 54, 125-138.

Subject Index

alpha factor analysis, 1534, 1552
analyzing data in groups
FACTOR procedure, 1564
biquartimax method, 1534, 1560, 1561
biquartimin method, 1534,1561
canonical factor solution, 1539
coefficient
alpha (FACTOR), 1580
common factor
defined for factor analysis, 1535
common factor analysis
common factor rotation, 1537
communality, 1536
compared with principal component analysis, 1535
Harris component analysis, 1536
image component analysis, 1536
interpreting, 1536
salience of loadings, 1537
uniqueness, 1536
computational resources
FACTOR procedure, 1578
confidence intervals, FACTOR procedure, 1571
confidence limits, FACTOR procedure, 1571
covarimin method, 1534, 1561
coverage displays
FACTOR procedure, 1572
Crawford-Ferguson family, 1534
Crawford-Ferguson method, 1560, 1561
degrees of freedom
FACTOR procedure, 1563
equamax method, 1534, 1560, 1561
factor
defined for factor analysis, 1535
factor analysis compared to component analysis, 1534, 1535
factor parsimax method, 1534, 1560, 1561
FACTOR procedure
computational resources, 1578
coverage displays, 1572
degrees of freedom, 1563
Heywood cases, 1576
number of factors extracted, 1553

ODS graph names, 1585
OUT = data sets, 1559
output data sets, 1540, 1559
simplicity functions, $1537,1559,1572$
time requirements, 1574
variances, 1563
Factor rotation
with FACTOR procedure, 1541
factor rotation methods, 1534
factor structure, 1541
generalized Crawford-Ferguson family, 1534
generalized Crawford-Ferguson method, 1560, 1561

Harris component analysis, 1534, 1536, 1552
Harris-Kaiser method, 1534, 1561
Heywood cases
FACTOR procedure, 1576
Howe's solution, 1539
image component analysis, 1534, 1536, 1552
interpretation
factor rotation, 1536
interpreting factors, elements to consider, 1537
iterated factor analysis, 1534
matrix
factor, defined for factor analysis
(FACTOR), 1535
maximum likelihood factor analysis, 1534, 1552
with FACTOR procedure, 1539, 1540
memory requirements
FACTOR procedure, 1578
ML factor analysis
and computer time, 1539
and confidence intervals, 1537, 1539, 1571
and multivariate normal distribution, 1539
and standard errors, 1539
oblimin method, 1534, 1561
oblique transformation, 1537, 1541
ODS graph names
FACTOR procedure, 1585
orthogonal transformation, 1537, 1541
orthomax method, 1534, 1560
OUT= data sets
FACTOR procedure, 1559,1568
output data sets

FACTOR procedure, 1540, 1559, 1568, 1569
OUTSTAT = data sets
FACTOR procedure, 1569
parsimax method, 1534, 1561, 1562
principal component analysis, 1534
compared with common factor analysis, 1535
with FACTOR procedure, 1537
principal factor analysis
with FACTOR procedure, 1538
Procrustes method, 1534
Procrustes rotation, 1562
promax method, 1534, 1562
quartimax method, 1534, 1561, 1562
quartimin method, 1534, 1562
reference structure, 1541
salience of loadings, FACTOR procedure, 1537, 1571
scree plot, 1579
simplicity functions
FACTOR procedure, 1537, 1559, 1572
time requirements
FACTOR procedure, 1574, 1578
transformations
oblique, 1537, 1541
orthogonal, 1537, 1541
Tucker and Lewis's Reliability Coefficient, 1580
TYPE= data sets
FACTOR procedure, 1569
ultra-Heywood cases, FACTOR procedure, 1576 unique factor
defined for factor analysis, 1535
unweighted least squares factor analysis, 1534
variances
FACTOR procedure, 1563
varimax method, 1534, 1561, 1562
weighting variables
FACTOR procedure, 1576

Syntax Index

ALL option
PROC FACTOR statement, 1550
ALPHA= option
PROC FACTOR statement, 1550
BY statement
FACTOR procedure, 1564

CONVERGE= option

PROC FACTOR statement, 1550
CORR option
PROC FACTOR statement, 1551
COVARIANCE option
PROC FACTOR statement, 1551
COVER= option
PROC FACTOR statement, 1551

DATA= option

PROC FACTOR statement, 1551

EIGENVECTORS option

PROC FACTOR statement, 1551
FACTOR procedure, 1548
syntax, 1548
FACTOR procedure, BY statement, 1564
FACTOR procedure, FREQ statement, 1564
FACTOR procedure, PARTIAL statement, 1565
FACTOR procedure, PRIORS statement, 1565
FACTOR procedure, PROC FACTOR statement, 1548
ALL option, 1550
ALPHA= option, 1550
CONVERGE= option, 1550
CORR option, 1551
COVARIANCE option, 1551
COVER= option, 1551
DATA= option, 1551
EIGENVECTORS option, 1551
FLAG= option, 1551
FUZZ= option, 1551
GAMMA= option, 1552
HEYWOOD option, 1552
HKPOWER= option, 1552
MAXITER $=$ option, 1552
METHOD = option, 1552
MINEIGEN $=$ option, 1553
MSA option, 1553
NFACTORS = option, 1554

NOBS= option, 1554
NOCORR option, 1554
NOINT option, 1554
NOPRINT option, 1554
NOPROMAXNORM option, 1554
NORM= option, 1554
NPLOTS= option, 1555
OUT= option, 1555
OUTSTAT = option, 1555
PARPREFIX= option, 1555
PLOT option, 1555
PLOTREF option, 1555
PLOTS = option, 1555
POWER= option, 1557
PREFIX= option, 1558
PREPLOT option, 1558
PREROTATE $=$ option, 1558
PRINT option, 1558
PRIORS= option, 1558
PROPORTION= option, 1559
RANDOM = option, 1559
RCONVERGE $=$ option, 1559
REORDER option, 1560
RESIDUALS option, 1560
RITER= option, 1560
ROTATE= option, 1560
ROUND option, 1562
SCORE option, 1562
SCREE option, 1562
SE option, 1562
SIMPLE option, 1563
SINGULAR= option, 1563
TARGET= option, 1563
TAU= option, 1563
ULTRAHEYWOOD option, 1563
VARDEF= option, 1563
WEIGHT option, 1563
FACTOR procedure, VAR statement, 1565
FACTOR procedure, WEIGHT statement, 1566
FLAG= option
PROC FACTOR statement, 1551
FREQ statement
FACTOR procedure, 1564
FUZZ= option
PROC FACTOR statement, 1551
GAMMA $=$ option
PROC FACTOR statement, 1552

HEYWOOD option
PROC FACTOR statement, 1552
HKPOWER= option
PROC FACTOR statement, 1552
MAXITER $=$ option
PROC FACTOR statement, 1552
METHOD= option
PROC FACTOR statement, 1552
MINEIGEN= option
PROC FACTOR statement, 1553
MSA option
PROC FACTOR statement, 1553
NFACTORS = option
PROC FACTOR statement, 1554
NOBS = option
PROC FACTOR statement, 1554
NOCORR option
PROC FACTOR statement, 1554
NOINT option
PROC FACTOR statement, 1554
NOPRINT option
PROC FACTOR statement, 1554
NOPROMAXNORM option
PROC FACTOR statement, 1554
NORM= option
PROC FACTOR statement, 1554
NPLOTS = option
PROC FACTOR statement, 1555
OUT= option
PROC FACTOR statement, 1555
OUTSTAT= option
PROC FACTOR statement, 1555
PARPREFIX= option
PROC FACTOR statement, 1555
PARTIAL statement
FACTOR procedure, 1565
PLOT option
PROC FACTOR statement, 1555
PLOTREF option
PROC FACTOR statement, 1555
PLOTS= option
PROC FACTOR statement, 1555
POWER= option
PROC FACTOR statement, 1557
PREFIX= option
PROC FACTOR statement, 1558
PREPLOT option
PROC FACTOR statement, 1558
PREROTATE = option
PROC FACTOR statement, 1558
PRINT option

PROC FACTOR statement, 1558
PRIORS statement
FACTOR procedure, 1565
PRIORS $=$ option
PROC FACTOR statement, 1558
PROC FACTOR statement, see FACTOR procedure
PROPORTION= option
PROC FACTOR statement, 1559
RANDOM= option
PROC FACTOR statement, 1559
RCONVERGE= option
PROC FACTOR statement, 1559
REORDER option
PROC FACTOR statement, 1560
RESIDUALS option
PROC FACTOR statement, 1560
RITER= option
PROC FACTOR statement, 1560
ROTATE $=$ option
PROC FACTOR statement, 1560
ROUND option
PROC FACTOR statement, 1562
SCORE option
PROC FACTOR statement, 1562
SCREE option
PROC FACTOR statement, 1562
SE option
PROC FACTOR statement, 1562
SIMPLE option
PROC FACTOR statement, 1563
SINGULAR = option
PROC FACTOR statement, 1563
TARGET= option
PROC FACTOR statement, 1563
TAU = option
PROC FACTOR statement, 1563
ULTRAHEYWOOD option
PROC FACTOR statement, 1563
VAR statement
FACTOR procedure, 1565
VARDEF = option
PROC FACTOR statement, 1563
WEIGHT option
PROC FACTOR statement, 1563
WEIGHT statement
FACTOR procedure, 1566

Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS ${ }^{\circledR}$ Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS ${ }^{\circledR}$ Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF - free on the Web.
- Hard-copy books.

support.sas.com/publishing

SAS ${ }^{\circledR}$ Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

