## Chapter 3

## Instanton Solutions in Non-Abelian Gauge Theory

## Contents

### 3.1 Conventions

3.2 Decomposition $S O(4)=S U(2) \times S U(2)$ and Quaternions

## 3.3 (Anti-)Self-Dual Configurations as Classical Solutions <br> 3.4 Winding Number for Finite Action Configurations

### 3.5 One Instanton Solution for $S U(2)$

3.6 A Class of Multi-Instanton Solutions
3.7 ADHM Construction for Most General Multi-Instanton Solutions

### 3.1 Conventions

Gauge fields:

$$
\begin{align*}
A_{\mu} & =g A_{\mu}^{a} T^{a}  \tag{3.1}\\
T^{a} & =\text { anti-hermitian generator } \\
{\left[T^{a}, T^{b}\right] } & =f^{a b c} T^{c} \\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]=g F_{\mu \nu}^{a} T^{a}  \tag{3.2}\\
F_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \tag{3.3}
\end{align*}
$$

Normalization: We normalize the generator as

$$
\begin{equation*}
\operatorname{Tr} T^{a} T^{b}=-\frac{1}{2} \delta^{a b} \tag{3.4}
\end{equation*}
$$

In the case of $G=S U(2)$, this corresponds precisely to the choice

$$
\begin{equation*}
T^{a}=t^{a} \equiv \frac{\tau^{a}}{2 i} \tag{3.5}
\end{equation*}
$$

Covariant derivative:

$$
\begin{align*}
D_{\mu} & \equiv \partial_{\mu}+A_{\mu}  \tag{3.6}\\
F_{\mu \nu} & =\left[D_{\mu}, D_{\nu}\right] \tag{3.7}
\end{align*}
$$

Inner product notation: Sometimes we use the following inner product notation

$$
\begin{equation*}
\left(T^{a}, T^{b}\right) \equiv \delta^{a b} \quad\left(=-2 \operatorname{Tr} T^{a} T^{b}\right) \tag{3.8}
\end{equation*}
$$

Euclidean action:

$$
\begin{align*}
S_{E} & =\frac{1}{4} \int d^{4} x F_{\mu \nu}^{a} F_{\mu \nu}^{a}=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu} F_{\mu \nu}\right) \\
& =\frac{1}{4 g^{2}} \int d^{4} x\left(F_{\mu \nu}, F_{\mu \nu}\right) \geq 0 \tag{3.9}
\end{align*}
$$

Indices and $\boldsymbol{\epsilon}$-tensor: To conform to some of the important literatures, we use the convention

$$
\begin{align*}
\mu, \nu & =0,1,2,3 \\
\epsilon_{0123} & =1 \tag{3.10}
\end{align*}
$$

Remark: If one uses the convention $\mu=1 \sim 4$ and $\epsilon_{1234}=1$, self-dual and anti-self-dual solutions are switched.

### 3.2 Decomposition $S O(4)=S U(2) \times S U(2)$ and Quaternions

In the following, the instanton for $G=S U(2)$ will play a fundamental role. This solution intertwines the gauge group and the spacetime symmetry group $S O(4)$, which can be decomposed as $S U(2) \times S U(2)$. This decomposition is intimately related to the quaternion, which will play a basic role in the ADHM construction.

### 3.2.1 Decomposition of $S O(4)$

## $S O(4)$ and its generators:

$S O(4)$ rotation is expressed as

$$
\begin{aligned}
x_{\mu}^{\prime} & =\Lambda_{\mu \nu} x_{\nu} \\
\Lambda^{T} \Lambda & =1
\end{aligned}
$$

Writing $\Lambda=\exp (\xi)$ and considering the infinitesimal transformation, we easily find that $\xi$ is real $4 \times 4$ antisymmetric matrix. The standard basis for such antisymmetric matrices can be taken as $L_{\mu \nu}$ defined by (choosing a convenient overall sign)

$$
\begin{equation*}
\left(L_{\mu \nu}\right)_{\rho \sigma} \equiv-\left(\delta_{\mu \rho} \delta_{\nu \sigma}-\delta_{\mu \sigma} \delta_{\nu \rho}\right) \tag{3.11}
\end{equation*}
$$

In other words, $L_{\mu \nu}$ has $\mathbf{- 1}$ at the position $(\mu, \nu)$ and 1 at $(\boldsymbol{\nu}, \boldsymbol{\mu})$ and 0 for all the other elements. The non-vanishing commutator for these generators is of the form

$$
\begin{equation*}
\left[L_{\mu \nu}, L_{\nu \rho}\right]=L_{\rho \mu} \quad \text { no sum over } \nu \tag{3.12}
\end{equation*}
$$

(For instance, $\left[L_{23}, L_{31}\right]=L_{12}$.) $\xi$ can then be decomposed as (watch for the order of indices)

$$
\begin{equation*}
\xi=-\frac{1}{2} \xi_{\mu \nu} L_{\mu \nu} \tag{3.13}
\end{equation*}
$$

$L_{\mu \nu}$ is a generator of rotation in the $\mu-\nu$ plane. For example, Rotation in the 1-2 plane is

$$
\begin{align*}
\binom{x_{1}^{\prime}}{x_{2}^{\prime}} & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \sim\left(\begin{array}{cc}
0 & -\theta \\
\theta & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\theta L_{12} x \tag{3.14}
\end{align*}
$$

## $S U(2) \times S U(2)$ decomposition:

If we define $I_{i}$ and $K_{i}(i=1,2,3)$ as

$$
\begin{aligned}
I_{i} & \equiv \frac{1}{2} \epsilon_{i j k} L_{j k} \\
K_{i} & \equiv L_{0 i}
\end{aligned}
$$

they satisfy the commutation relations

$$
\begin{aligned}
{\left[I_{i}, I_{j}\right] } & =\epsilon_{i j k} I_{k} \\
{\left[I_{i}, K_{j}\right] } & =\epsilon_{i j k} K_{k} \\
{\left[K_{i}, K_{j}\right] } & =\epsilon_{i j k} I_{k}
\end{aligned}
$$

Now define the following combinations

$$
\begin{equation*}
J_{i}^{ \pm} \equiv \frac{1}{2}\left(I_{i} \pm K_{i}\right) \tag{3.15}
\end{equation*}
$$

Then, we find that they generate separtely the algebra of $S U(2)$ :

$$
\begin{aligned}
{\left[J_{i}^{ \pm}, J_{j}^{ \pm}\right] } & =\epsilon_{i j k} J_{k}^{ \pm} \\
{\left[J_{i}^{ \pm}, J_{j}^{\mp}\right] } & =0
\end{aligned}
$$

To see that they generate really the group $S U(2) \times S U(2)$, compute the exponent $-\frac{1}{2} \xi_{\mu \nu} L_{\mu \nu}$ :

$$
\begin{aligned}
-\frac{1}{2} \xi_{\mu \nu} L_{\mu \nu} & =-\xi_{0 i} K_{i}-\frac{1}{2} \xi_{i j} \epsilon_{i j k} I_{k} \\
& =\left(-\frac{1}{2} \xi_{i j} \epsilon_{i j k}-\xi_{0 k}\right) J_{k}^{+}+\left(-\frac{1}{2} \xi_{i j} \epsilon_{i j k}+\xi_{0 k}\right) J_{k}^{-} \\
& \equiv \theta_{k}^{+} J_{k}^{+}+\theta_{k}^{-} J_{k}^{-}
\end{aligned}
$$

Since $\theta_{k}^{ \pm}$are real and independent, the decomposition is indeed $S U(2) \times S U(2)$. In this regard, recall that for the Lorentz group, they are complex conjugate of each other.

## Intertwiner:

We will need a more explicit relation between $S O(4)$ and $S U(2) \times$ $S U(2)$.
Let $M_{A B}$ be an $S U(2)$ transformation matrix and $u_{B}$ be the fundamental spinor representation:

$$
\begin{equation*}
u_{A}^{\prime}=M_{A B} u_{B}, \quad M^{\dagger} M=1, \quad A, B=1,2 \tag{3.16}
\end{equation*}
$$

We will use dotted indices such as $\dot{A}, \dot{B}$ for the second $S U(2)$.
The above decomposition means that there must exist a $4 \times 4$ intertwining matrix $T_{A \dot{B}, \mu}$ such that

$$
\begin{aligned}
T J_{i}^{+} T^{-1} & \equiv \mathcal{J}_{i}^{+}=\frac{\Sigma_{i}^{+}}{2 i} \otimes \mathbf{1} \\
T J_{i}^{-} T^{-1} & \equiv \mathcal{J}_{i}^{-}=\mathbf{1} \otimes \frac{\Sigma_{i}^{-}}{2 i}
\end{aligned}
$$

or more explicitly

$$
\begin{aligned}
T_{A \dot{B}, \mu}\left(J_{i}^{+}\right)_{\mu \nu} & =\left(\frac{\Sigma_{i}^{+}}{2 i} \otimes \mathbf{1}\right)_{A \dot{B}, C \dot{D}} T_{C \dot{D}, \nu} \\
T_{A \dot{B}, \mu}\left(J_{i}^{-}\right)_{\mu \nu} & =\left(\mathbf{1} \otimes \frac{\Sigma_{i}^{-}}{2 i}\right)_{A \dot{B}, C \dot{D}} T_{C \dot{D}, \nu}
\end{aligned}
$$

where $\Sigma_{i}^{ \pm}$are $2 \times 2 S U(2)$ generators. A solution to these set of equations is, regarding $T_{A \dot{B}, \mu}$ as four $2 \times 2$ matrices,

$$
\begin{align*}
T_{0} & =1, \quad T_{i}=-i \tau_{i}  \tag{3.17}\\
\Sigma_{i}^{+} & =\tau_{i}, \quad \Sigma_{i}^{-}=-\tau_{i}^{T} \tag{3.18}
\end{align*}
$$

where $\tau_{i}$ are the Pauli matricies. Indeed $\Sigma_{i}^{ \pm}$satisfy the same algebra. Hereafter, we shall write

$$
\begin{equation*}
\sigma_{\mu} \equiv T_{\mu}=\left(1,-i \tau_{i}\right) \tag{3.19}
\end{equation*}
$$

In this way, we obtain the following explicit decomposition formula for general $S O(4)$ transformation:

$$
\begin{align*}
x^{\prime} & =\Lambda x=e^{\theta_{k}^{+} J_{k}^{+}} e^{\theta_{k}^{-} J_{k}^{-}} x  \tag{3.20}\\
T x^{\prime} & =\sigma_{\mu} \Lambda_{\mu \nu} x_{\nu}=\left[T e^{\theta_{k}^{+} J_{k}^{+}} T^{-1}\right]\left[T e^{\theta_{k}^{-} J_{k}^{-}} T^{-1}\right] T x \\
& =\left[e^{\theta_{k}^{+} \Sigma^{+} / 2 i} \otimes e^{\theta_{k}^{-} \Sigma^{-} / 2 i}\right] T x \\
& =e^{\theta_{k}^{+} \Sigma^{+} / 2 i} \sigma_{\nu} e^{\theta_{k}^{-}\left(\Sigma^{-}\right)^{T} / 2 i} x_{\nu} \tag{3.21}
\end{align*}
$$

Removing $x_{\nu}$, this can be written as

$$
\begin{align*}
\sigma_{\mu} \Lambda_{\mu \nu} & =M_{+} \sigma_{\nu} M_{-}^{T}  \tag{3.22}\\
M_{ \pm} & =S U(2)_{ \pm} \tag{3.23}
\end{align*}
$$

Therefore, $\sigma_{\mu}$ transforms under bifundamental $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation of $S U(2) \times S U(2)$.

### 3.2.2 Quaternions

$\sigma_{\mu}$ defined above is deeply related to the quaternions, which forms an algebra (actually a field) denoted by $\mathbf{H}$.

Quaternion $q \in \mathbf{H}$ is defined by

$$
\begin{equation*}
q=\sum_{\mu=0}^{3} q_{\mu} e_{\mu}=q_{0} e_{0}+\sum_{i=1}^{3} q_{i} e_{i} \tag{3.24}
\end{equation*}
$$

where $q_{\mu}$ are real numbers and $e_{\mu}$ 's satisfy the following closed algebra:

$$
\begin{align*}
& e_{0} e_{0}=e_{0}, \quad e_{i} e_{i}=-e_{0}  \tag{3.25}\\
& e_{0} e_{i}=e_{i} e_{0}=e_{i}, \quad e_{i} e_{j}=\epsilon_{i j k} e_{k}(i \neq j) \tag{3.26}
\end{align*}
$$

Since $e_{i} e_{j}=-e_{j} e_{i}$, quaternion algebra is in general non-commutative. This multiplication rule can be summarized as ( $\mu, \nu$ on the RHS are not summed)

$$
\begin{align*}
e_{\mu} e_{\nu}= & -(-1)^{\delta_{\mu 0}} \delta_{\mu \nu} e_{0}+\delta_{\mu 0}\left(1-\delta_{\nu 0}\right) e_{\nu}+\delta_{\nu 0}\left(1-\delta_{\mu 0}\right) e_{\mu} \\
& +\sum_{\rho} \epsilon_{0 \mu \nu \rho} \mathrm{e}_{\rho} \tag{3.27}
\end{align*}
$$

When one sets $e_{2}=e_{3}=0$, then it becomes a complex number, with $e_{1}$ being the imaginary unit $i$. Hereafter summation over the repeated indices will be assumed, unless otherwise stated. It is clear that $\mathbf{H}$ is closed under multiplication.

Remark: One can easily check that if we ignore the fact that $\sigma_{\mu}$ has the index structure $\left(\sigma_{\mu}\right)_{A \dot{B}}$, namely that row and column indices are acted on by different $S U(2)$ groups, $\sigma_{\mu}$ satisfies exactly the same algebra as quaternions defined above.

## $\square$ Conjugation, (anti-)self-duality and norm:

Quaternionic conjugate of $q$ will be denoted by $q^{\dagger}$ and is defined by

$$
\begin{align*}
q^{\dagger} & \equiv q_{\mu} e_{\mu}^{\dagger}  \tag{3.28}\\
e_{0}^{\dagger} & =e_{0}, \quad e_{i}^{\dagger}=-e_{i} \tag{3.29}
\end{align*}
$$

Consider now the products $e_{\mu} e_{\nu}^{\dagger}$ and $e_{\mu}^{\dagger} e_{\nu}$. Due to the following group theoretical reasons, they have very simple interpretations:

If we go back to $\sigma_{\mu}$ interpretation of quaternions, $e_{\mu} e_{\nu}^{\dagger}$ is a quantity which transforms solely by $S U(2)_{+}$, like $M_{+} e_{\mu} e_{\nu}^{\dagger} M_{+}^{\dagger}$. Thus, it is a singlet under $S U(2)_{-}$and is therefore a mixture of $(0,0)$ and $(1,0)$ :

$$
\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right)=(1,1) \oplus(1,0) \oplus+(0,1) \oplus(0,0)
$$

The former must be represented by $\delta_{\mu \nu}$ and the latter should be a self-dual antisymmetric tensor, which will be denoted by $2 i \sigma_{\mu \nu}$.

Similarly, $e_{\mu}^{\dagger} e_{\nu}$ transforms under $S U(2)_{-}$like $M_{-}^{*} e_{\mu}^{\dagger} e_{\nu} M_{-}^{T}$ and is a mixture of $(0,0)$ and $(0,1)$. The latter is the anti-self-dual part of $S O(4)$ tensor.

In fact, one easily verifies the following relations:

$$
\begin{align*}
e_{\mu} e_{\nu}^{\dagger} & =\delta_{\mu \nu}+2 i \sigma_{\mu \nu}  \tag{3.30}\\
e_{\mu}^{\dagger} e_{\nu} & =\delta_{\mu \nu}+2 i \bar{\sigma}_{\mu \nu}  \tag{3.31}\\
\sigma_{\mu \nu} & =\frac{1}{4 i}\left(e_{\mu} e_{\nu}^{\dagger}-e_{\nu} e_{\mu}^{\dagger}\right)  \tag{3.32}\\
\bar{\sigma}_{\mu \nu} & =\frac{1}{4 i}\left(e_{\mu}^{\dagger} e_{\nu}-e_{\nu}^{\dagger} e_{\mu}\right) \tag{3.33}
\end{align*}
$$

where $\sigma_{\mu \nu}$ and $\bar{\sigma}_{\mu \nu}$ are antisymmetric, hermitian and satisfy the
following duality properties:

$$
\begin{aligned}
{ }^{*} \sigma_{\mu \nu} & \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \sigma_{\rho \sigma}=\sigma_{\mu \nu} \quad \text { self-dual(SD) } \\
{ }^{*} \bar{\sigma}_{\mu \nu} & \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \bar{\sigma}_{\rho \sigma}=-\bar{\sigma}_{\mu \nu} \quad \text { anti-self-dual(ASD) } \\
\epsilon_{0123} & \equiv 1
\end{aligned}
$$

(For example, ${ }^{*}\left(e_{0} e_{1}^{\dagger}\right)=e_{2} e_{3}^{\dagger}=-e_{1}=e_{0} e_{1}^{\dagger}$ satisfying selfduality.)
't Hooft tensor: $\quad \sigma_{\mu \nu}$ and $\bar{\sigma}_{\mu \nu}$ are traceless as $2 \times 2$ matrices. Thus, they can be expanded in terms of $e_{a}$, with $a=1,2,3$. Explicitly,

$$
\begin{align*}
\sigma_{\mu \nu} & \equiv \frac{1}{2} \eta_{\mu \nu}^{a}\left(i e_{a}\right)=\eta_{\mu \nu}^{a} \frac{\tau_{a}}{2}  \tag{3.34}\\
\eta_{\mu \nu}^{a} & =\delta_{\mu 0} \delta_{\nu a}-\delta_{\nu 0} \delta_{\mu a}+\epsilon_{0 a \mu \nu}  \tag{3.35}\\
\bar{\sigma}_{\mu \nu} & \equiv \frac{1}{2} \bar{\eta}_{\mu \nu}^{a}\left(i e_{a}\right)=\bar{\eta}_{\mu \nu}^{a} \frac{\tau_{a}}{2}  \tag{3.36}\\
\bar{\eta}_{\mu \nu}^{a} & =-\left(\delta_{\mu 0} \delta_{\nu a}-\delta_{\nu 0} \delta_{\mu a}\right)+\epsilon_{0 a \mu \nu} \tag{3.37}
\end{align*}
$$

$\eta_{\mu \nu}^{a}, \bar{\eta}_{\mu \nu}^{a}$ are often called 't Hooft tensors. In the construction of instanton solution, $e_{a}$ will be regarded as the basis for the gauge group $\boldsymbol{S U ( 2 )}$. Thus,'t Hooft tensors intertwine the spacetime and internal groups.

## Properties of the 't Hooft tensors:

$$
\begin{aligned}
& \eta_{a \mu \nu}=\epsilon_{a \mu \nu}, \quad \text { if } \quad \mu, \nu=1,2,3 \\
& \eta_{a 0 \nu}=\delta_{a \nu} \\
& \eta_{a \mu 0}=-\delta_{a \mu} \\
& \eta_{a 00}=0 \\
& \bar{\eta}_{a \mu \nu}=(-1)^{\delta_{\mu 0}+\delta_{\nu 0}} \eta_{a \mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{a \mu \nu} \eta_{b \mu \nu}=4 \delta_{a b} \\
& \eta_{a \mu \nu} \eta_{a \mu \lambda}=3 \delta_{\nu \lambda} \\
& \eta_{a \mu \nu} \eta_{a \mu \nu}=12 \\
& \eta_{a \mu \nu} \eta_{a \kappa \lambda}=\delta_{\mu \kappa} \delta_{\nu \lambda}-\delta_{\mu \lambda} \delta_{\nu \kappa}+\epsilon_{\mu \nu \kappa \lambda} \\
& \delta_{\kappa \lambda} \eta_{a \mu \nu}+\delta_{\kappa \nu} \eta_{a \lambda \mu}+\delta_{\kappa \mu} \eta_{a \nu \lambda}+\eta_{a \sigma \kappa} \epsilon_{\lambda \mu \nu \sigma}=0 \\
& \eta_{a \mu \nu} \eta_{b \mu \lambda}=\delta_{a b} \delta_{\nu \lambda}+\epsilon_{a b c} \eta_{c \nu \lambda} \\
& \epsilon_{a b c} \eta_{b \mu \nu} \eta_{c \kappa \lambda}=\delta_{\mu \kappa} \eta_{a \nu \lambda}-\delta_{\mu \lambda} \eta_{a \nu \kappa}-\delta_{\nu \kappa} \eta_{a \mu \lambda}+\delta_{\nu \lambda} \eta_{a \mu \kappa} \\
& \qquad \eta_{a \mu \nu} \bar{\eta}_{b \mu \nu}=0 \\
& \quad \eta_{a \kappa \mu} \bar{\eta}_{b \kappa \lambda}=\eta_{a \kappa \lambda} \bar{\eta}_{b \kappa \mu}
\end{aligned}
$$

Norm: $\quad$ The norm-squared of $q$ is defined as $q^{\dagger} q$ :

$$
\begin{equation*}
|q|^{2}=q^{\dagger} q=q_{\mu} q_{\nu} e_{\mu}^{\dagger} e_{\nu}=q_{\mu} q_{\nu} \delta_{\mu \nu}=\sum q_{\mu} q_{\mu} \geq 0 \tag{3.38}
\end{equation*}
$$

where the equality holds if and only if $q=0$. It is clear that $q^{\dagger} q=q q^{\dagger}$ holds. Furthermore, this shows that non-vanishing $q$ always has the inverse $q^{-1}$ (hence $\mathbf{H}$ forms a field) given by

$$
\begin{equation*}
q^{-1}=\frac{q^{\dagger}}{|q|^{2}}, \quad q q^{-1}=q^{-1} q=1 \tag{3.39}
\end{equation*}
$$

## Another view of 't Hooft tensor:

The 't Hooft tensor can be introduced from a slightly different point of view. The idea is to extend the action of $S O(4)$ to the internal gauge group part. One natural way is to intertwine the gauge group $S U(2)_{g}$ with one of the $S U(2)$ factor of $S O(4)$.
For instance, extend $S U(2)_{+}$to $S U(2)_{+} \oplus S U(2)_{g}$. The total generator for this sector becomes

$$
\begin{equation*}
\tilde{J}_{i}^{+}=J_{i}^{+}+t_{i} \tag{3.40}
\end{equation*}
$$

where $t_{i}$ is the generator of $S U(2)_{g}$ satisfying $\left[t_{i}, t_{j}\right]=\epsilon_{i j k} t_{k}$. $S U(2)_{-}$sector is unchanged, i.e. $\tilde{J}_{i}^{-}=J_{i}^{-}$. Then, going backwards to $L_{\mu \nu}$, we easily find the following modified expressions denoted by $\tilde{L}_{\mu \nu}$ :

$$
\begin{aligned}
\tilde{L}_{\mu \nu} & =L_{\mu \nu}+l_{\mu \nu} \\
\text { where } \quad l_{i j} & =\epsilon_{i j k} t_{k} \\
l_{0 i} & =t_{i}
\end{aligned}
$$

Since $\tilde{J}_{i}^{ \pm}$satisfy exactly the same commutation relations as before, $\tilde{L}_{\mu \nu}$ (and hence $l_{\mu \nu}$ themselves) obey $S O(4)$ algebra. Now introduce $\eta_{a \mu \nu}$ by

$$
\begin{equation*}
l_{\mu \nu}=\eta_{a \mu \nu} t_{a}=\eta_{a \mu \nu} \frac{\tau_{a}}{2 i} \tag{3.41}
\end{equation*}
$$

Then, one can check that $\eta_{a \mu \nu}$ is exactly the 't Hooft tensor. This also means the identification $\sigma_{\mu \nu}=i l_{\mu \nu}$.

## $\square$ Conversion between $e_{\mu}$ and $e_{\mu}^{\dagger}$ :

The following relation is often useful:

$$
\begin{aligned}
\epsilon e_{\mu} \epsilon^{T} & =e_{\mu}^{*}, \quad \epsilon=i \tau_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\Leftrightarrow \quad \epsilon_{A A^{\prime}}\left(e_{\mu}\right)_{A^{\prime} B^{\prime}} \epsilon_{B^{\prime} B} & =-\left(e_{\mu}^{\dagger}\right)_{B A}
\end{aligned}
$$

## 3.3 (Anti-)Self-Dual Configurations as Classical Solutions

### 3.3.1 Some formulas

We define the dual field strength as

$$
\begin{equation*}
\tilde{F}_{\mu \nu} \equiv \frac{1}{2} \epsilon_{\mu \nu \alpha \beta} F_{\alpha \beta} \tag{3.42}
\end{equation*}
$$

Then we find

$$
\begin{equation*}
\boldsymbol{F}_{\mu \nu}^{2}=\tilde{\boldsymbol{F}}_{\mu \nu}^{2} \tag{3.43}
\end{equation*}
$$

Proof:

$$
\tilde{F}_{\mu \nu}^{2}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F_{\alpha \beta} F_{\rho \sigma}=\frac{1}{4} 2\left(\delta_{\alpha \rho} \delta_{\beta \sigma}-\delta_{\alpha \sigma} \delta_{\beta \rho}\right) F_{\alpha \beta} F_{\rho \sigma}=F_{\mu \nu}^{2}
$$

Using this formula, we get (with $F=F_{\mu \nu}^{a}$ etc.)

$$
\begin{equation*}
\frac{1}{2}(F \pm \tilde{F})^{2}=\frac{1}{2}\left(F^{2}+\tilde{F}^{2} \pm 2 F \tilde{F}\right)=F^{2} \pm F \tilde{F} \geq 0 \tag{3.44}
\end{equation*}
$$

Since $F^{2} \geq 0$, this implies

$$
\begin{equation*}
\boldsymbol{F}^{2} \geq|\boldsymbol{F} \tilde{\boldsymbol{F}}| \tag{3.45}
\end{equation*}
$$

where the equality holds when $F \pm \tilde{F}=0$, i.e. for $\boldsymbol{F}_{\mu \nu}^{a}= \pm \tilde{\boldsymbol{F}}_{\mu \nu}^{a}$. These are called self-dual (SD) and anti-self-dual (ASD) configurations. Hereafter, we use (A)SD to denote both of these configurations.

### 3.3.2 Minimum action configurations

Integrate the relation (3.44) above over the space-time. We get

$$
\begin{align*}
S_{E} & =\frac{1}{4 g^{2}} \int d^{4} x F_{\mu \nu}^{a} F_{\mu \nu}^{a} \geq|Q|  \tag{3.46}\\
\text { where } \quad Q & \equiv \frac{1}{4 g^{2}} \int d^{4} x F_{\mu \nu}^{a} \tilde{F}_{\mu \nu}^{a} \tag{3.47}
\end{align*}
$$

and the minimum value of the action is attained for (A)SD configurations.

## Equation of motion and Bianchi identity:

(A)SD configurations are necessarily solutions of the classical YM equation

$$
\begin{equation*}
\left[D_{\mu}, F_{\mu \nu}\right]=0 \tag{3.48}
\end{equation*}
$$

This is because the Bianchi identity

$$
\begin{equation*}
0=\left[D_{\mu}, \tilde{F}_{\mu \nu}\right]=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta}\left[D_{\mu},\left[D_{\alpha}, D_{\beta}\right]\right] \tag{3.49}
\end{equation*}
$$

is equivalent to the equation of motion for (A)SD configurations.

## Vanishing of the energy-momentum tensor:

The energy-momentum tensor is given by (omitting the group theory superscript $a$ )

$$
\begin{equation*}
T_{\mu \nu}=F_{\mu \lambda} F_{\lambda \nu}-\frac{1}{4} \delta_{\mu \nu}\left(F_{\alpha \beta} F_{\beta \alpha}\right) \tag{3.50}
\end{equation*}
$$

Exercise: Prove that $T_{\mu \nu}=0$ for (A)SD configurations.
Now we use the following identity:

$$
\begin{equation*}
\tilde{F}_{\mu \lambda} \tilde{F}_{\lambda \nu}=\frac{1}{2} \delta_{\mu \nu} F_{\alpha \beta} F_{\beta \alpha}-F_{\mu \alpha} F_{\alpha \nu} \tag{3.51}
\end{equation*}
$$

This can be proved by direct calculation:

$$
\begin{align*}
\tilde{F}_{\mu \lambda} \tilde{F}_{\lambda \nu} & =\frac{1}{4} \epsilon_{\mu \lambda \alpha_{1} \alpha_{2}} \epsilon_{\lambda \nu \beta_{1} \beta_{2}} F_{\alpha_{1} \alpha_{2}} F_{\beta_{1} \beta_{2}} \\
& =-\frac{1}{4}\left|\begin{array}{ccc}
\delta_{\mu \nu} & \delta_{\mu \beta_{1}} & \delta_{\mu \beta_{2}} \\
\delta_{\alpha_{1} \nu} & \delta_{\alpha_{1} \beta_{1}} & \delta_{\alpha_{1} \beta_{2}} \\
\delta_{\alpha_{2} \nu} & \delta_{\alpha_{2} \beta_{1}} & \delta_{\alpha_{2} \beta_{2}}
\end{array}\right| F_{\alpha_{1} \alpha_{2}} F_{\beta_{1} \beta_{2}} \\
& =\cdots \\
& =\frac{1}{2} \delta_{\mu \nu} F_{\alpha \beta} F_{\beta \alpha}-F_{\mu \alpha} F_{\alpha \nu} \tag{3.5}
\end{align*}
$$

Therefore, we get

$$
\begin{equation*}
\frac{1}{4} \delta_{\mu \nu}\left(F_{\alpha \beta} F_{\beta \alpha}\right)=\frac{1}{2}\left(F_{\mu \alpha} F_{\alpha \nu}+\tilde{F}_{\mu \alpha} \tilde{F}_{\alpha \nu}\right) \tag{3.53}
\end{equation*}
$$

Putting this into $T_{\mu \nu}$, we find

$$
\begin{equation*}
T_{\mu \nu}=\frac{1}{2}\left(F_{\mu \alpha} F_{\alpha \nu}-\tilde{F}_{\mu \alpha} \tilde{F}_{\alpha \nu}\right) \tag{3.54}
\end{equation*}
$$

which obviously vanishes for (A)SD configurations.

### 3.4 Winding Number for Finite Action Configurations

### 3.4.1 Topological nature of the charge $Q$

It is easy to see that $Q$ is topological in the sense that it is invariant under any continuous deformation of $A_{\mu}$. Infact

$$
\begin{align*}
\delta \operatorname{Tr} F_{\mu \nu} \tilde{F}_{\mu \nu} & =2 \operatorname{Tr}\left(\delta\left[D_{\mu}, D_{\nu}\right] \tilde{F}_{\mu \nu}\right) \\
& =4 \operatorname{Tr}\left(\left[\partial_{\mu}+A_{\mu}, \delta A_{\nu}\right] \tilde{F}_{\mu \nu}\right) \\
& =\partial_{\mu} \operatorname{Tr}\left(4 \delta A_{\nu} \tilde{F}_{\mu \nu}\right)+4 \operatorname{Tr}\left(\delta A_{\nu}\left[D_{\mu}, \tilde{F}_{\mu \nu}\right]\right)( \tag{3.55}
\end{align*}
$$

Due to the Bianchi identity, the second term vanishes and the result is a total derivative. Upon integration this vanishes if at least $F_{\mu \nu}$ tends to zero at infinity. Note that this is true for any configuration.

Remark: We have already discussed this in the lecture on anomaly. There we derived the formula

$$
\begin{equation*}
\delta \operatorname{Tr}\left(F^{n+1}\right)=d\left((n+1) \operatorname{Tr}\left(\delta A F^{n}\right)\right) \tag{3.56}
\end{equation*}
$$

For $n=1$, this is nothing but the above equation:

$$
\begin{aligned}
F^{2} & =F \wedge F=\frac{1}{2} F_{\mu \nu} \tilde{F}_{\mu \nu} d^{4} x \\
\delta A F & =\delta A \wedge F=\frac{1}{2} A_{\mu} F_{\alpha \beta} d x^{\mu} d x^{\alpha} d x^{\beta} \\
\therefore \quad d(\delta A F) & =\partial_{\nu}\left(\delta A_{\mu} \tilde{F}_{\nu \mu}\right) d^{4} x
\end{aligned}
$$

In fact, we showed that $\operatorname{Tr} F^{2}=d \omega_{3}^{0}$, where
$\omega_{3}^{0}=\operatorname{Tr}\left(A F-\frac{1}{3} A^{3}\right)=\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)=$ Chern-Simons form

More explicitly,

$$
\begin{aligned}
d \omega_{3}^{0} & =\partial_{\mu} K_{\mu} d^{4} x \\
K_{\mu} & =\epsilon_{\mu \nu \alpha \beta} \operatorname{Tr}\left(\frac{1}{2} A_{\nu} F_{\alpha \beta}-\frac{1}{3} A_{\nu} A_{\alpha} A_{\beta}\right)
\end{aligned}
$$

### 3.4.2 Non-trivial gauge transformations and their winding number

For the action to be finite, $F_{\mu \nu}$ must fall off faster than $1 / r^{2}$ as $r=\sqrt{x^{2}} \rightarrow \infty$. This means that the gauge potential must fall off faster than $1 / r$ up to a gauge transformation, i.e.

$$
A_{\mu} \sim g^{-1} \partial_{\mu} g+o\left(\frac{1}{r}\right)
$$

## Case of $G=S U(2)$ :

The most general $S U(2)$ gauge transformation can be written as

$$
g=a+i b_{i} \tau_{i}
$$

where $a, b_{i}(i=1,2,3)$ are real numbers satisfying

$$
a^{2}+b_{i} b_{i}=1 \Leftarrow g^{\dagger} g=1
$$

This shows that $S U(2)$ is topologically a 3 -sphere $S^{3}$.
Note that $g$ is nothing but a quaternion $q$ with the unit norm $q^{\dagger} q=1$. This is the well-known equivalence

$$
S U(2) \simeq S p(1)
$$

When $a$ and $b_{i}$ become functions of $x_{\mu}, g(x)$ for large fixed $r$ gives a mapping $\boldsymbol{S}^{\mathbf{3}}$ (space time) $\rightarrow \boldsymbol{S}^{\mathbf{3}}(\boldsymbol{S U ( 2 ) )}$. The important fact is that such gauge transformations are classified by the
homotopy group, i.e. the additive group of equivalence class whose members are continuously deformable to each other.

The simplest non-trivial gauge transformation which is not homotipic to a constant can be represented by

$$
g=\frac{1}{r}\left(x_{0}+i \vec{x} \cdot \vec{\tau}\right)=\frac{1}{r} \sigma_{\nu}^{\dagger} x_{\nu}
$$

It is clear that, for a fixed $r$, as one covers $S^{3}$ in space one covers $S U(2)$ group space exactly once.

Let us compute the pure gauge potential corresponding to this $g$ :

$$
\begin{aligned}
g^{-1} & =\frac{1}{r} \sigma_{\nu} x_{\nu} \\
\partial_{\mu} g & =\frac{1}{r} \sigma_{\mu}^{\dagger}-\frac{x_{\mu}}{r^{3}} \sigma_{\nu}^{\dagger} x_{\nu} \\
A_{\mu} & =g^{-1} \partial_{\mu} g=\frac{1}{r} \sigma_{\lambda} x_{\lambda}\left(\frac{1}{r} \sigma_{\mu}^{\dagger}-\frac{x_{\mu}}{r^{3}} \sigma_{\nu}^{\dagger} x_{\nu}\right)=\cdots \\
& =\frac{-2 i \sigma_{\mu \lambda} x_{\lambda}}{r^{2}}=\frac{2 l_{\mu \lambda} x_{\lambda}}{r^{2}}
\end{aligned}
$$

where we used $\sigma_{\mu} \sigma_{\nu}^{\dagger}=\delta_{\mu \nu}+2 i \sigma_{\mu \nu}$.
Since, as we have seen, the topological charge is a homotopy invariant, it must characterize the homotopy class of the gauge transformation $g$. Since except at the origin $F$ vanishes for a pure gauge potential, we have

$$
\begin{aligned}
\int \operatorname{Tr} F^{2} & =\int d^{4} x \partial_{\mu} K_{\mu}^{g}=\int_{S^{3}} d^{3} x \frac{x_{\mu}}{r} K_{\mu}^{g} \\
K_{\mu}^{g} & =-\frac{1}{3} \epsilon_{\mu \nu \alpha \beta} \operatorname{Tr}\left(A_{\nu} A_{\alpha} A_{\beta}\right)
\end{aligned}
$$

(AF part of $K_{\mu}$ is zero for pure gauge configuration.)
To evaluate this, note that
(i) $K_{\mu}^{g}$ is a vector and hence $x_{\mu} K_{\mu}^{g}$ is rotationally invariant and
(ii) we may set $r=1$ since we are computing a homotopy invariant.
Thus, all we have to do is to compute the value of the integrand at one point on a unit $S^{3}$ and multiply by the volume of $S^{3}$, which is $2 \pi^{2}$. Take the point to be $x_{0}=1, x_{i}=0$. Then,

$$
\begin{aligned}
A_{i} & =-2 i \sigma_{i 0}=i \tau_{i} \\
\frac{x_{\mu}}{r} K_{\mu}^{g} & =K_{0}^{g}=\frac{i}{3} \epsilon_{i j k} \operatorname{Tr}\left(\tau_{i} \tau_{j} \tau_{k}\right)=-\frac{2}{3} \epsilon_{i j k} \epsilon_{i j k}=-4
\end{aligned}
$$

Thus, if we define the Pontryagin index (or winding number) $k$ by

$$
k \equiv \frac{1}{32 \pi^{2}} \int d^{4} x F_{\mu}^{a} \tilde{\boldsymbol{F}}_{\mu \nu}^{a}=-\frac{1}{8 \pi^{2}} \int \operatorname{Tr} \boldsymbol{F}^{2}
$$

we get

$$
k=-\frac{1}{8 \pi^{2}}(-4) 2 \pi^{2}=1
$$

for the above homotopy class.
Additivity of the winding number: For more general gauge transformation, the following observation suffices: Let the winding number of $g_{i}, i=1,2$ be $k_{i}$ and consider the product $g=g_{1} g_{2}$.


Since the winding number is unchanged by continuous deformation, we may deform $g_{1}\left(g_{2}\right)$ such that $g_{1}=1\left(g_{2}=1\right)$ on the lower (upper) hemisphere of $S^{3}$. In this case the winding number $k_{1}$ for $g_{1}$ is obtained by integration over the upper hemisphere only and so on. It is then clear that the winding number of $g_{1} g_{2}$ is $k_{1}+k_{2}$.

### 3.5 One Instanton Solution for $S U(2)$

With these preparations, we now describe how to obtain the simplest (anti-)instanton solution with $k= \pm 1$.

Since the (A)SD equations are still rather difficult to solve in complete generality, one would like to make an ansatz to find solutions.

The most natural strategy is to first look for a self-dual solution with $S O(4)$ symmetry. An obvious ansatz (adopted by BPST) to try is

$$
A_{\mu}=g A_{\mu}^{a} t_{a}=\eta_{\mu \nu}^{a} t_{a} x_{\nu} f\left(x^{2}\right)=l_{\mu \nu} x_{\nu} f\left(x^{2}\right)
$$

which satisfies the gauge condition $x_{\mu} A_{\mu}=0$. Using the $S O(4)$ commutation relations, we can easily compute $F_{\mu \nu}$ to be

$$
F_{\mu \nu}=\underbrace{l_{\mu \nu}}_{S D}\left(x^{2} f^{2}-2 f\right)+\underbrace{\left(x_{\mu} l_{\nu \lambda} x_{\lambda}-(\mu \leftrightarrow \nu)\right)}_{A S D}\left(2 f^{\prime}+f^{2}\right)
$$

where $f^{\prime}$ means derivative with respect to $x^{2}$. For this to be self-dual, we must set $2 f^{\prime}+f^{2}=0$. The general solution of this equation is

$$
\begin{equation*}
f\left(x^{2}\right)=\frac{2}{x^{2}+\rho^{2}} \tag{3.57}
\end{equation*}
$$

with $\rho$ a constant. Thus we get a regular self-dual solution

$$
\begin{align*}
A_{\mu} & =\frac{2 l_{\mu \nu} x_{\nu}}{x^{2}+\rho^{2}}, \quad A_{\mu}^{a}=\frac{2}{g} \frac{\eta_{\mu \nu}^{a} x_{\nu}}{x^{2}+\rho^{2}}  \tag{3.58}\\
F_{\mu \nu} & =-\frac{4 l_{\mu \nu} \rho^{2}}{\left(x^{2}+\rho^{2}\right)^{2}}, \quad F_{\mu \nu}^{a}=-\frac{4}{g} \frac{\eta_{\mu \nu}^{a} \rho^{2}}{\left(x^{2}+\rho^{2}\right)^{2}} \tag{3.59}
\end{align*}
$$

- $\rho$ can be interpreted as the size of the instanton.
- From translation invariance, we may replace $x_{\mu}$ by $x_{\mu}-a_{\mu}$ with $a_{\mu}$ describing the position of the instanton.
- Thus, this solution has 5 gauge-invariant free parameters, called the moduli of an instanton solution.
- With $\bar{\eta}_{\mu \nu}^{a}$ replacing $\eta_{\mu \nu}^{a}$, one gets the anti-instanton solution.

Note that as $r \rightarrow \infty, \boldsymbol{A}_{\mu}$ precisely reduces to the pure gauge $g^{-1} \partial_{\mu} g$ carrying winding number 1 , with $g$ discussed previously.

### 3.6 A Class of Multi-Instanton Solutions

### 3.6.1 Extended Ansatz

A more general ansatz which yields a class of multi-instanton solutions is of the form ${ }^{1}$

$$
\begin{equation*}
A_{\mu}=l_{\mu \alpha} \partial_{\alpha} f(x) \tag{3.60}
\end{equation*}
$$

which satisfies the gauge condition $\partial_{\mu} A_{\mu}=0$. One can easily compute $F_{\mu \nu}$ to be

$$
\begin{aligned}
& F_{\mu \nu} \\
\text { where } \quad & l_{\mu \nu}(\partial f)^{2}-l_{\mu \rho} S_{\rho \nu}+l_{\nu \rho} S_{\rho \mu} \\
S_{\mu \nu} & =\partial_{\nu} \partial_{\nu} f+\partial_{\mu} f \partial_{\nu} f=\text { symmetric }
\end{aligned}
$$

Now decompose $V_{\alpha \beta}$ into the traceless part and the trace part:

$$
\begin{aligned}
S_{\mu \nu} & =T_{\mu \nu}+\frac{1}{4} \delta_{\mu \nu} S \\
S & =S_{\mu \mu}, \quad T_{\mu \mu}=0
\end{aligned}
$$

Then, we get

$$
\begin{aligned}
& F_{\mu \nu}=\frac{1}{2} l_{\mu \nu}\left((\partial f)^{2}-\partial^{2} f\right)+A_{\mu \nu} \\
& A_{\mu \nu}=-l_{\mu \rho} T_{\rho \nu}+l_{\nu \rho} T_{\rho \mu}
\end{aligned}
$$

The first term is clearly self-dual. Although it is not at all obvious, $\boldsymbol{A}_{\mu \nu}$ part is actually anti-self-dual. This can be checked by studying $\tilde{A}_{i 0}$ and $\tilde{A}_{i j}$ separately. The reason for it is

[^0]roughly as follows: In terms of $S U(2) \times S U(2)$ representations, $l_{\mu \nu} \in(1,0)$ and $T_{\mu \nu}$ (traceless, symmetric) $\in(1,1)$. Thus $(1,0) \times$ $(1,1)=(0,1) \oplus(2,1)$. The above combination picks up the anti-self-dual part $(0,1)$.

### 3.6.2 Self-dual solution

Self-dual solution is obtained if we set $A_{\mu \nu}=0$, i.e. $T_{\mu \nu}=0$ :

$$
S_{\mu \nu}-\frac{1}{4} \delta_{\mu \nu} S=\partial_{\mu} \partial_{\nu} f+\partial_{\mu} f \partial_{\nu} f-\frac{1}{4} \delta_{\mu \nu}\left(\partial^{2} f+(\partial f)^{2}\right)=0
$$

It is convenient to set $\boldsymbol{f}=-\ln \varphi$. Then, the equation above can be rewritten as

$$
\partial_{\mu}\left(\frac{\partial_{\nu} \varphi}{\varphi^{2}}\right)=\frac{1}{4} \delta_{\mu \nu} \partial_{\rho}\left(\frac{\partial_{\rho} \varphi}{\varphi^{2}}\right)
$$

This means that $\partial_{\nu} \varphi / \varphi^{2}$ can only be a linear function of $x_{\nu}$ of the form $c x_{\nu}+d_{\nu}$. Thus, we have

$$
\frac{\partial_{\nu} \varphi}{\varphi^{2}}=\partial_{\nu}\left(-\varphi^{-1}\right)=c x_{\nu}+d_{\nu}
$$

For $c \neq 0$, the solution is of the form

$$
\varphi=-\frac{1}{\frac{1}{2} c(x-a)^{2}+b}
$$

This gives a finite action only if the sign of $c$ and $b$ are the same, so that $\varphi$ never blows up. In such a case, it coincides with the BPST solution, which is not new. For $c=0, F_{\mu \nu}$ becomes singular.

### 3.6.3 Anti-self-dual solution

Another possiblity is to set the self-dual part to zero. This will turn out to give more interesting solutions. The equation
is $(\partial f)^{2}=\partial^{2} f$ and just as before, set $f=-\ln \varphi$. Then this simplifies to

$$
\frac{\partial^{2} \varphi}{\varphi}=0
$$

The most general solution with positive definite sign with isolated singularities is

$$
\varphi=\sum_{i=1}^{N} \frac{\rho_{i}^{2}}{\left(x-a_{i}\right)^{2}}+c^{2}
$$

- Due to the division by $\varphi$, the $\delta$-function is annihilated and this is a legitimate solution of the above equation.
- Since the equation above is defined only up to an overall constant, there are actually only two types of solutions: $c=1$ (first considered by 't Hooft) and $c=0$ (introduced by Jackiw, Nohl and Rebbi).

As we shall see, they represent multi-anti-instanton solutions with winding number $-N$ and $-(N-1)$ respectively.

### 3.6.4 Regular Solution by Gauge Transformations

The ASD solution above is singular at $N$ points $x=a_{i}$. Actually, these singularities are gauge artifacts.

To show this, we must be rather careful and define the gauge field $B_{\mu}$ which is equal to $A_{\mu}$ except at the singular points. Explicitly,

$$
B_{\mu}=-\frac{2 i \sigma_{\mu \nu}}{\varphi} \sum_{i=1}^{N} \frac{\rho_{i}^{2}\left(x-a_{i}\right)_{\nu}}{\left(x-a_{i}\right)^{4}}, \quad x \neq a_{i}
$$

(This form is exactly what we get if we formally compute $A_{\mu}$. )
$\boldsymbol{c}=\mathbf{0}$ case: Consider first the $c=0$ case. Then, it has the following asymptotic behavior as $x \rightarrow \infty$ :

$$
\begin{aligned}
\varphi & \xrightarrow{x \rightarrow \infty} \frac{1}{x^{2}} \sum_{i=1}^{N} \rho_{i}^{2} \\
B_{\mu} & \xrightarrow{x \rightarrow \infty}-\frac{2 i \sigma_{\mu \nu} x_{\nu}}{x^{2}}
\end{aligned}
$$

This shows, surprisingly at first, that $B_{\mu}$ has the same asymptotic behavior as the BPST instanton (not anti-instanton) despite the fact that we are dealing with ASD solution ${ }^{2}$. In any case, this means that $B_{\mu}$ approaches a pure gauge

$$
\begin{aligned}
B_{\mu} & \xrightarrow{x \rightarrow \infty}=g^{-1} \partial_{\mu} g \\
g & =\frac{x_{0}+i \tau_{i} x_{i}}{r}
\end{aligned}
$$

Now define $\overline{\boldsymbol{k}}$ to be the winding number as defined solely by the asymptotic behavior. Then, obviously,

$$
\bar{k}\left(B_{\mu}\right)=1
$$

$\boldsymbol{c}=1$ case: The case of $c=1$ is more puzzling. In this case,

$$
\varphi \xrightarrow{x \rightarrow \infty} 1+\mathcal{O}\left(1 / x^{2}\right) \Rightarrow B_{\mu} \xrightarrow{x \rightarrow \infty} \mathcal{O}\left(1 / x^{3}\right)
$$

[^1]and hence $\bar{k}=0$.
What is happening is that $\bar{k}$ need not coincide with the true winding number $k$ which is properly defined only for a regular solution. To see this, we must study whether we can remove the singularity by a gauge transformation. We will do this one at a time.

First look at the behavior around $\boldsymbol{x}=\boldsymbol{a}_{\boldsymbol{1}}$. One easily finds (for general $c$ )

$$
\varphi \xrightarrow{x \rightarrow a_{1}} \frac{\rho_{1}^{2}}{\left(x-a_{1}\right)^{2}}+\underbrace{\sum_{j=2}^{N} \frac{\rho_{j}^{2}}{\left(a_{1}-a_{j}\right)^{2}}+c^{2}}_{c_{1}^{2}}+\mathcal{O}\left(\frac{\left|x-a_{1}\right|}{a}\right)
$$

where $\quad a \equiv \min _{j \neq 1}\left|a_{1}-a_{j}\right|$
For simplicity, let us define

$$
\begin{aligned}
c_{1}^{2} & \equiv c^{2}+\sum_{j=2}^{N} \frac{\rho_{j}^{2}}{\left(a_{1}-a_{j}\right)^{2}} \\
\rho^{2} & \equiv \frac{\rho_{1}^{2}}{c_{1}^{2}} \\
y & \equiv x-a_{1}
\end{aligned}
$$

Then the behavior above takes the form

$$
\varphi \xrightarrow{y \rightarrow 0} c_{1}^{2}\left(1+\frac{\rho^{2}}{y^{2}}\right)+\mathcal{O}(|y| / a)
$$

From this one finds

$$
\begin{aligned}
B_{\mu} & \xrightarrow{y \rightarrow 0} \frac{-2 i \rho^{2} \sigma_{\mu \nu} y_{\nu}}{y^{2}\left(y^{2}+\rho^{2}\right)}+\mathcal{O}\left(y^{2} / a^{2}\right) \\
& =\frac{-2 i \sigma_{\mu \nu} y_{\nu}}{y^{2}}+\frac{y^{2}}{y^{2}+\rho^{2}}\left(\frac{-2 i \sigma_{\mu \nu} y_{\nu}}{y^{2}}\right)+\mathcal{O}\left(y^{2} / a^{2}\right)
\end{aligned}
$$

This means that the singular part of $B_{\mu}$ at $y=0$ is a pure gauge and can be removed by the inverse of the "large" gauge
transformation $g(y)$ given previously. (This procedure should be regarded as a mere technique of getting a regular solution.) The result of this procedure is

$$
\begin{aligned}
B_{\mu}^{\prime} & =g B_{\mu} g^{-1}+g \partial_{\mu} g^{-1} \\
& =\frac{y^{2}}{y^{2}+\rho^{2}} g \partial_{\mu} g^{-1}+\mathcal{O}\left(y^{2} / a^{2}\right) \\
& =\frac{2 i \bar{\sigma}_{\mu \nu} y_{\nu}}{y^{2}+\rho^{2}}+\mathcal{O}\left(y^{2} / a^{2}\right) \quad \Leftarrow g \partial_{\mu} g^{-1}=\frac{2 i \bar{\sigma}_{\mu \nu} y_{\nu}}{y^{2}}
\end{aligned}
$$

Thus by this procedure, we indeed get around $y=0$ a regular anti-self-dual structure. Now since we have performed a gauge transformation by $g^{-1}$, the winding number $\bar{k}$ is now decreased by one unit. Thus every time we remove the singularity by a gauge transformation we have $\Delta \bar{k}=-1$. So, after removing $N$ singularities, we get

$$
\begin{array}{rlr}
k=\bar{k}=1-N=-(N-1) & \text { for } c=0 \\
k & =\bar{k}=0-N=-N & \text { for } c=1
\end{array}
$$

Exercise: Compute the winding number directly from the singular solution. (Hint: Utilize the fact that $\partial^{2} \partial^{2} \ln \prod_{i=1}^{N}(x-$ $\left.a_{i}\right)^{2}=0$ for $x \neq a_{i}$.)


[^0]:    ${ }^{1}$ F. Wilczeck, in "Quark confinement and Field Theory", ed. D. Stump and D. Weingarten (New York, 1977); E. Corrigan and D.B. Fairlie, PLB67 (77) 69.

[^1]:    ${ }^{2} F_{\mu \nu}$ is indeed still ASD.

