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3.1 Conventions

Gauge fields:

Aµ = gAa
µT

a (3.1)

T a = anti-hermitian generator
[
T a, T b

]
= fabcT c

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] = gF a
µνT

a (3.2)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (3.3)

Normalization: We normalize the generator as

TrT aT b = −1

2
δab (3.4)

In the case of G = SU(2), this corresponds precisely to the

choice

T a = ta ≡ τ a

2i
(3.5)

Covariant derivative:

Dµ ≡ ∂µ + Aµ (3.6)

Fµν = [Dµ, Dν] (3.7)

Inner product notation: Sometimes we use the following

inner product notation

(T a, T b) ≡ δab (= −2TrT aT b) (3.8)

Euclidean action:

SE =
1

4

∫
d4xF a

µνF
a
µν = − 1

2g2

∫
d4x Tr(FµνFµν)

=
1

4g2

∫
d4x(Fµν, Fµν) ≥ 0 (3.9)
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Indices and ε-tensor: To conform to some of the important

literatures, we use the convention

µ, ν = 0, 1, 2, 3

ε0123 = 1 (3.10)

Remark: If one uses the convention µ = 1 ∼ 4 and ε1234 = 1,

self-dual and anti-self-dual solutions are switched.
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3.2 Decomposition SO(4) = SU(2) × SU(2)

and Quaternions

In the following, the instanton for G = SU(2) will play a funda-

mental role. This solution intertwines the gauge group and the

spacetime symmetry group SO(4), which can be decomposed

as SU(2) × SU(2). This decomposition is intimately related

to the quaternion, which will play a basic role in the ADHM

construction.

3.2.1 Decomposition of SO(4)

2 SO(4) and its generators:

SO(4) rotation is expressed as

x′µ = Λµνxν

ΛTΛ = 1

Writing Λ = exp(ξ) and considering the infinitesimal transfor-

mation, we easily find that ξ is real 4× 4 antisymmetric matrix.

The standard basis for such antisymmetric matrices can be taken

as Lµν defined by (choosing a convenient overall sign)

(Lµν)ρσ ≡ −(δµρδνσ − δµσδνρ) (3.11)

In other words, Lµν has −1 at the position (µ, ν) and 1

at (ν, µ) and 0 for all the other elements. The non-vanishing

commutator for these generators is of the form

[Lµν, Lνρ] = Lρµ no sum over ν (3.12)
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(For instance, [L23, L31] = L12.) ξ can then be decomposed as

(watch for the order of indices)

ξ = −1

2
ξµνLµν (3.13)

Lµν is a generator of rotation in the µ-ν plane. For example,

Rotation in the 1-2 plane is
(

x′1
x′2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x1

x2

)

∼
(

0 −θ

θ 0

)(
x1

x2

)
= θL12x (3.14)

2 SU(2) × SU(2) decomposition:

If we define Ii and Ki (i = 1, 2, 3) as

Ii ≡ 1

2
εijkLjk

Ki ≡ L0i

they satisfy the commutation relations

[Ii, Ij] = εijkIk

[Ii, Kj] = εijkKk

[Ki, Kj] = εijkIk

Now define the following combinations

J±i ≡ 1

2
(Ii ±Ki) (3.15)

Then, we find that they generate separtely the algebra of SU(2):

[
J±i , J±j

]
= εijkJ

±
k[

J±i , J∓j
]

= 0
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To see that they generate really the group SU(2) × SU(2),

compute the exponent −1
2ξµνLµν:

−1

2
ξµνLµν = −ξ0iKi − 1

2
ξijεijkIk

=

(
−1

2
ξijεijk − ξ0k

)
J+

k +

(
−1

2
ξijεijk + ξ0k

)
J−k

≡ θ+
k J+

k + θ−k J−k

Since θ±k are real and independent, the decomposition is in-

deed SU(2)× SU(2). In this regard, recall that for the Lorentz

group, they are complex conjugate of each other.

2 Intertwiner:

We will need a more explicit relation between SO(4) and SU(2)×
SU(2).

Let MAB be an SU(2) transformation matrix and uB be the

fundamental spinor representation:

u′A = MABuB , M †M = 1 , A, B = 1, 2 (3.16)

We will use dotted indices such as Ȧ, Ḃ for the second SU(2).

The above decomposition means that there must exist a 4×4

intertwining matrix TAḂ,µ such that

TJ+
i T−1 ≡ J +

i =
Σ+

i

2i
⊗ 1

TJ−i T−1 ≡ J −
i = 1⊗ Σ−

i

2i

or more explicitly

TAḂ,µ(J
+
i )µν =

(
Σ+

i

2i
⊗ 1

)

AḂ,CḊ

TCḊ,ν

TAḂ,µ(J
−
i )µν =

(
1⊗ Σ−

i

2i

)

AḂ,CḊ

TCḊ,ν
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where Σ±
i are 2× 2 SU(2) generators. A solution to these set of

equations is, regarding TAḂ,µ as four 2× 2 matrices,

T0 = 1 , Ti = −iτi (3.17)

Σ+
i = τi , Σ−

i = −τT
i (3.18)

where τi are the Pauli matricies. Indeed Σ±
i satisfy the same

algebra. Hereafter, we shall write

σµ ≡ Tµ = (1,−iτi) (3.19)

In this way, we obtain the following explicit decomposition

formula for general SO(4) transformation:

x′ = Λx = eθ+
k J+

k eθ−k J−k x (3.20)

Tx′ = σµΛµνxν =
[
Teθ+

k J+
k T−1

] [
Teθ−k J−k T−1

]
Tx

=
[
eθ+

k Σ+/2i ⊗ eθ−k Σ−/2i
]
Tx

= eθ+
k Σ+/2iσνe

θ−k (Σ−)T /2ixν (3.21)

Removing xν, this can be written as

σµΛµν = M+σνM
T
− (3.22)

M± = SU(2)± (3.23)

Therefore, σµ transforms under bifundamental (1
2 ,

1
2) represen-

tation of SU(2)× SU(2).

3.2.2 Quaternions

σµ defined above is deeply related to the quaternions, which

forms an algebra (actually a field) denoted by H.
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Quaternion q ∈ H is defined by

q =
3∑

µ=0

qµeµ = q0e0 +
3∑

i=1

qiei (3.24)

where qµ are real numbers and eµ’s satisfy the following closed

algebra:

e0e0 = e0 , eiei = −e0 , (3.25)

e0ei = eie0 = ei , eiej = εijkek (i 6= j) (3.26)

Since eiej = −ejei, quaternion algebra is in general non-commutative.

This multiplication rule can be summarized as (µ, ν on the RHS

are not summed)

eµeν = −(−1)δµ0δµνe0 + δµ0(1 − δν0)eν + δν0(1 − δµ0)eµ

+
∑

ρ

ε0µνρeρ (3.27)

When one sets e2 = e3 = 0, then it becomes a complex number,

with e1 being the imaginary unit i. Hereafter summation over

the repeated indices will be assumed, unless otherwise stated.

It is clear that H is closed under multiplication.

Remark: One can easily check that if we ignore the fact that

σµ has the index structure (σµ)AḂ, namely that row and col-

umn indices are acted on by different SU(2) groups, σµ satisfies

exactly the same algebra as quaternions defined above.

2 Conjugation, (anti-)self-duality and norm:

Quaternionic conjugate of q will be denoted by q† and is defined

by

q† ≡ qµe†
µ (3.28)

e†
0 = e0 , e†

i = −ei (3.29)
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Consider now the products eµe
†
ν and e†µeν. Due to the following

group theoretical reasons, they have very simple interpretations:

If we go back to σµ interpretation of quaternions, eµe
†
ν is a

quantity which transforms solely by SU(2)+, like M+eµe
†
νM

†
+.

Thus, it is a singlet under SU(2)− and is therefore a mixture of

(0, 0) and (1, 0):

(
1

2
,
1

2
)⊗ (

1

2
,
1

2
) = (1, 1)⊕ (1, 0)⊕+(0, 1)⊕ (0, 0)

The former must be represented by δµν and the latter should

be a self-dual antisymmetric tensor, which will be denoted by

2iσµν.

Similarly, e†µeν transforms under SU(2)− like M ∗
−e†µeνM

T
− and

is a mixture of (0, 0) and (0, 1). The latter is the anti-self-dual

part of SO(4) tensor.

In fact, one easily verifies the following relations:

eµe
†
ν = δµν + 2iσµν (3.30)

e†µeν = δµν + 2iσ̄µν (3.31)

σµν =
1

4i
(eµe

†
ν − eνe

†
µ) (3.32)

σ̄µν =
1

4i
(e†µeν − e†νeµ) (3.33)

where σµν and σ̄µν are antisymmetric, hermitian and satisfy the
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following duality properties:

∗σµν ≡ 1

2
εµνρσσρσ = σµν self-dual(SD)

∗σ̄µν ≡ 1

2
εµνρσσ̄ρσ = −σ̄µν anti-self-dual(ASD)

where ε0123 ≡ 1

(For example, ∗(e0e
†
1) = e2e

†
3 = −e1 = e0e

†
1 satisfying self-

duality. )

’t Hooft tensor: σµν and σ̄µν are traceless as 2×2 matrices.

Thus, they can be expanded in terms of ea, with a = 1, 2, 3.

Explicitly,

σµν ≡ 1

2
ηa

µν(iea) = ηa
µν

τa

2
(3.34)

ηa
µν = δµ0δνa − δν0δµa + ε0aµν (3.35)

σ̄µν ≡ 1

2
η̄a

µν(iea) = η̄a
µν

τa

2
(3.36)

η̄a
µν = −(δµ0δνa − δν0δµa) + ε0aµν (3.37)

ηa
µν, η̄

a
µν are often called ’t Hooft tensors. In the construction

of instanton solution, ea will be regarded as the basis for the

gauge group SU(2). Thus,’t Hooft tensors intertwine the

spacetime and internal groups.

Properties of the ’t Hooft tensors:

ηaµν = εaµν , if µ, ν = 1, 2, 3

ηa0ν = δaν

ηaµ0 = −δaµ

ηa00 = 0

η̄aµν = (−1)δµ0+δν0ηaµν

3.2-10



ηaµνηbµν = 4δab

ηaµνηaµλ = 3δνλ

ηaµνηaµν = 12

ηaµνηaκλ = δµκδνλ − δµλδνκ + εµνκλ

δκληaµν + δκνηaλµ + δκµηaνλ + ηaσκελµνσ = 0

ηaµνηbµλ = δabδνλ + εabcηcνλ

εabcηbµνηcκλ = δµκηaνλ − δµληaνκ − δνκηaµλ + δνληaµκ

ηaµν η̄bµν = 0

ηaκµη̄bκλ = ηaκλη̄bκµ

Norm: The norm-squared of q is defined as q†q:

|q|2 = q†q = qµqνe
†
µeν = qµqνδµν =

∑
qµqµ ≥ 0 (3.38)

where the equality holds if and only if q = 0. It is clear that

q†q = qq† holds. Furthermore, this shows that non-vanishing q

always has the inverse q−1 (hence H forms a field) given by

q−1 =
q†

|q|2 , qq−1 = q−1q = 1 (3.39)

2 Another view of ’t Hooft tensor:

The ’t Hooft tensor can be introduced from a slightly different

point of view. The idea is to extend the action of SO(4) to the

internal gauge group part. One natural way is to intertwine

the gauge group SU(2)g with one of the SU(2) factor

of SO(4).

For instance, extend SU(2)+ to SU(2)+ ⊕ SU(2)g. The total

generator for this sector becomes

J̃+
i = J+

i + ti (3.40)
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where ti is the generator of SU(2)g satisfying [ti, tj] = εijktk.

SU(2)− sector is unchanged, i.e. J̃−i = J−i . Then, going back-

wards to Lµν, we easily find the following modified expressions

denoted by L̃µν:

L̃µν = Lµν + lµν

where lij = εijktk

l0i = ti

Since J̃±i satisfy exactly the same commutation relations as be-

fore, L̃µν (and hence lµν themselves) obey SO(4) algebra. Now

introduce ηaµν by

lµν = ηaµνta = ηaµν
τa

2i
(3.41)

Then, one can check that ηaµν is exactly the ’t Hooft tensor.

This also means the identification σµν = ilµν .

2 Conversion between eµ and e†
µ:

The following relation is often useful:

εeµε
T = e∗µ , ε = iτ2 =

(
0 1
−1 0

)

⇔ εAA′(eµ)A′B′εB′B = −(e†µ)BA

3.3 (Anti-)Self-Dual Configurations as Clas-

sical Solutions

3.3.1 Some formulas

We define the dual field strength as

F̃µν ≡ 1

2
εµναβFαβ (3.42)
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Then we find

F 2
µν = F̃ 2

µν (3.43)

Proof:

F̃ 2
µν =

1

2
εµναβ

1

2
εµνρσFαβFρσ =

1

4
2(δαρδβσ − δασδβρ)FαβFρσ = F 2

µν

Using this formula, we get (with F = F a
µν etc.)

1

2
(F ± F̃ )2 =

1

2
(F 2 + F̃ 2 ± 2FF̃ ) = F 2 ± FF̃ ≥ 0

(3.44)

Since F 2 ≥ 0, this implies

F 2 ≥ |F F̃ | (3.45)

where the equality holds when F±F̃ = 0, i.e. for F a
µν = ±F̃ a

µν .

These are called self-dual (SD) and anti-self-dual (ASD)

configurations. Hereafter, we use (A)SD to denote both of these

configurations.

3.3.2 Minimum action configurations

Integrate the relation (3.44) above over the space-time. We get

SE =
1

4g2

∫
d4xF a

µνF
a
µν ≥ |Q| (3.46)

where Q ≡ 1

4g2

∫
d4xF a

µνF̃
a
µν (3.47)

and the minimum value of the action is attained for (A)SD con-

figurations.

2 Equation of motion and Bianchi identity:

(A)SD configurations are necessarily solutions of the classical

YM equation

[Dµ , Fµν] = 0 (3.48)
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This is because the Bianchi identity

0 =
[
Dµ , F̃µν

]
=

1

2
εµναβ [Dµ , [Dα , Dβ]] (3.49)

is equivalent to the equation of motion for (A)SD configurations.

2 Vanishing of the energy-momentum tensor:

The energy-momentum tensor is given by (omitting the group

theory superscript a)

Tµν = FµλFλν − 1

4
δµν(FαβFβα) (3.50)

Exercise: Prove that Tµν = 0 for (A)SD configurations.

Now we use the following identity:

F̃µλF̃λν =
1

2
δµνFαβFβα − FµαFαν (3.51)

This can be proved by direct calculation:

F̃µλF̃λν =
1

4
εµλα1α2ελνβ1β2Fα1α2Fβ1β2

= −1

4

∣∣∣∣∣∣

δµν δµβ1 δµβ2

δα1ν δα1β1 δα1β2

δα2ν δα2β1 δα2β2

∣∣∣∣∣∣
Fα1α2Fβ1β2

= · · ·
=

1

2
δµνFαβFβα − FµαFαν (3.52)

Therefore, we get

1

4
δµν(FαβFβα) =

1

2
(FµαFαν + F̃µαF̃αν) (3.53)

Putting this into Tµν, we find

Tµν =
1

2
(FµαFαν − F̃µαF̃αν) (3.54)

which obviously vanishes for (A)SD configurations.
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3.4 Winding Number for Finite Action Con-

figurations

3.4.1 Topological nature of the charge Q

It is easy to see that Q is topological in the sense that it is

invariant under any continuous deformation of Aµ. Infact

δTrFµνF̃µν = 2Tr(δ [Dµ, Dν] F̃µν)

= 4Tr([∂µ + Aµ, δAν] F̃µν)

= ∂µTr(4δAνF̃µν) + 4Tr(δAν

[
Dµ, F̃µν

]
)(3.55)

Due to the Bianchi identity, the second term vanishes and the

result is a total derivative. Upon integration this vanishes if at

least Fµν tends to zero at infinity. Note that this is true for any

configuration.

Remark: We have already discussed this in the lecture on

anomaly. There we derived the formula

δTr(F n+1) = d ((n + 1)Tr(δAF n)) (3.56)

For n = 1, this is nothing but the above equation:

F 2 = F ∧ F =
1

2
FµνF̃µνd

4x

δAF = δA ∧ F =
1

2
AµFαβdxµdxαdxβ

q qq d(δAF ) = ∂ν(δAµF̃νµ)d
4x

In fact, we showed that TrF 2 = dω0
3, where

ω0
3 = Tr

(
AF − 1

3
A3

)
= Tr

(
AdA +

2

3
A3

)
= Chern-Simons form
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More explicitly,

dω0
3 = ∂µKµd

4x

Kµ = εµναβTr

(
1

2
AνFαβ − 1

3
AνAαAβ

)

3.4.2 Non-trivial gauge transformations and their wind-
ing number

For the action to be finite, Fµν must fall off faster than 1/r2 as

r =
√

x2 → ∞. This means that the gauge potential must

fall off faster than 1/r up to a gauge transformation,

i.e.

Aµ ∼ g−1∂µg + o

(
1

r

)

2 Case of G = SU(2):

The most general SU(2) gauge transformation can be written

as

g = a + ibiτi

where a, bi (i = 1, 2, 3) are real numbers satisfying

a2 + bibi = 1 ⇐ g†g = 1

This shows that SU(2) is topologically a 3-sphere S3.

Note that g is nothing but a quaternion q with the unit

norm q†q = 1. This is the well-known equivalence

SU(2) ' Sp(1)

When a and bi become functions of xµ, g(x) for large fixed r

gives a mapping S3(space time) → S3(SU(2)). The impor-

tant fact is that such gauge transformations are classified by the
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homotopy group, i.e. the additive group of equivalence class

whose members are continuously deformable to each other.

The simplest non-trivial gauge transformation which

is not homotipic to a constant can be represented by

g =
1

r
(x0 + i~x · ~τ ) =

1

r
σ†

νxν

It is clear that, for a fixed r, as one covers S3 in space one covers

SU(2) group space exactly once.

Let us compute the pure gauge potential corresponding

to this g:

g−1 =
1

r
σνxν

∂µg =
1

r
σ†µ −

xµ

r3 σ†νxν

Aµ = g−1∂µg =
1

r
σλxλ

(
1

r
σ†µ −

xµ

r3 σ†νxν

)
= · · ·

=
−2iσµλxλ

r2 =
2lµλxλ

r2

where we used σµσ
†
ν = δµν + 2iσµν.

Since, as we have seen, the topological charge is a homotopy

invariant, it must characterize the homotopy class of the gauge

transformation g. Since except at the origin F vanishes for a

pure gauge potential, we have
∫

TrF 2 =

∫
d4x∂µK

g
µ =

∫

S3

d3x
xµ

r
Kg

µ

Kg
µ = −1

3
εµναβTr(AνAαAβ)
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(AF part of Kµ is zero for pure gauge configuration.)

To evaluate this, note that

(i) Kg
µ is a vector and hence xµK

g
µ is rotationally invariant and

(ii) we may set r = 1 since we are computing a homotopy in-

variant.

Thus, all we have to do is to compute the value of the integrand

at one point on a unit S3 and multiply by the volume of S3,

which is 2π2. Take the point to be x0 = 1, xi = 0. Then,

Ai = −2iσi0 = iτi

xµ

r
Kg

µ = Kg
0 =

i

3
εijkTr(τiτjτk) = −2

3
εijkεijk = −4

Thus, if we define the Pontryagin index (or winding num-

ber) k by

k ≡ 1

32π2

∫
d4x F a

µ F̃ a
µν = − 1

8π2

∫
TrF 2

we get

k = − 1

8π2 (−4)2π2 = 1

for the above homotopy class.

Additivity of the winding number: For more general

gauge transformation, the following observation suffices: Let the

winding number of gi, i = 1, 2 be ki and consider the product

g = g1g2.
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g2 = 1

g1 = 1

Since the winding number is unchanged by continuous deforma-

tion, we may deform g1(g2) such that g1 = 1(g2 = 1)on the lower

(upper) hemisphere of S3. In this case the winding number k1

for g1 is obtained by integration over the upper hemisphere only

and so on. It is then clear that the winding number of g1g2 is

k1 + k2.

3.5 One Instanton Solution for SU(2)

With these preparations, we now describe how to obtain the

simplest (anti-)instanton solution with k = ±1.

Since the (A)SD equations are still rather difficult to solve in

complete generality, one would like to make an ansatz to find

solutions.

The most natural strategy is to first look for a self-dual so-

lution with SO(4) symmetry. An obvious ansatz (adopted by

BPST) to try is

Aµ = gAa
µta = ηa

µνtaxνf(x2) = lµνxνf(x2)
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which satisfies the gauge condition xµAµ = 0. Using the SO(4)

commutation relations, we can easily compute Fµν to be

Fµν = lµν︸︷︷︸
SD

(x2f 2 − 2f) + (xµlνλxλ − (µ ↔ ν))︸ ︷︷ ︸
ASD

(2f ′ + f 2)

where f ′ means derivative with respect to x2. For this to be

self-dual, we must set 2f ′ + f 2 = 0. The general solution of this

equation is

f(x2) =
2

x2 + ρ2 (3.57)

with ρ a constant. Thus we get a regular self-dual solution

Aµ =
2lµνxν

x2 + ρ2
, Aa

µ =
2

g

ηa
µνxν

x2 + ρ2
(3.58)

Fµν = − 4lµνρ2

(x2 + ρ2)2
, F a

µν = −4

g

ηa
µνρ2

(x2 + ρ2)2
(3.59)

• ρ can be interpreted as the size of the instanton.

• From translation invariance, we may replace xµ by xµ− aµ

with aµ describing the position of the instanton.

• Thus, this solution has 5 gauge-invariant free parame-

ters, called the moduli of an instanton solution.

• With η̄a
µν replacing ηa

µν, one gets the anti-instanton solution.
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Note that as r → ∞, Aµ precisely reduces to the pure

gauge g−1∂µg carrying winding number 1, with g dis-

cussed previously.

3.6 A Class of Multi-Instanton Solutions

3.6.1 Extended Ansatz

A more general ansatz which yields a class of multi-instanton

solutions is of the form1

Aµ = lµα∂αf(x) (3.60)

which satisfies the gauge condition ∂µAµ = 0. One can easily

compute Fµν to be

Fµν = lµν(∂f)2 − lµρSρν + lνρSρµ

where Sµν = ∂ν∂νf + ∂µf∂νf = symmetric

Now decompose Vαβ into the traceless part and the trace part:

Sµν = Tµν +
1

4
δµνS

S = Sµµ , Tµµ = 0

Then, we get

Fµν =
1

2
lµν((∂f)2 − ∂2f) + Aµν

Aµν = −lµρTρν + lνρTρµ

The first term is clearly self-dual. Although it is not at all

obvious, Aµν part is actually anti-self-dual. This can be

checked by studying Ãi0 and Ãij separately. The reason for it is
1F. Wilczeck, in “Quark confinement and Field Theory”, ed. D. Stump and D. Wein-

garten (New York, 1977); E. Corrigan and D.B. Fairlie, PLB67 (77) 69.
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roughly as follows: In terms of SU(2)× SU(2) representations,

lµν ∈ (1, 0) and Tµν(traceless, symmetric) ∈ (1, 1). Thus (1, 0)×
(1, 1) = (0, 1) ⊕ (2, 1). The above combination picks up the

anti-self-dual part (0, 1).

3.6.2 Self-dual solution

Self-dual solution is obtained if we set Aµν = 0, i.e. Tµν = 0:

Sµν − 1

4
δµνS = ∂µ∂νf + ∂µf∂νf − 1

4
δµν

(
∂2f + (∂f)2) = 0

It is convenient to set f = − ln ϕ. Then, the equation above

can be rewritten as

∂µ

(
∂νϕ

ϕ2

)
=

1

4
δµν∂ρ

(
∂ρϕ

ϕ2

)

This means that ∂νϕ/ϕ2 can only be a linear function of xν of

the form cxν + dν. Thus, we have

∂νϕ

ϕ2 = ∂ν(−ϕ−1) = cxν + dν

For c 6= 0, the solution is of the form

ϕ = − 1
1
2c(x− a)2 + b

This gives a finite action only if the sign of c and b are the same,

so that ϕ never blows up. In such a case, it coincides with

the BPST solution, which is not new. For c = 0, Fµν becomes

singular.

3.6.3 Anti-self-dual solution

Another possiblity is to set the self-dual part to zero. This

will turn out to give more interesting solutions. The equation
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is (∂f)2 = ∂2f and just as before, set f = − ln ϕ. Then this

simplifies to

∂2ϕ

ϕ
= 0

The most general solution with positive definite sign with iso-

lated singularities is

ϕ =
N∑

i=1

ρ2
i

(x − ai)2
+ c2

• Due to the division by ϕ, the δ-function is annihilated and

this is a legitimate solution of the above equation.

• Since the equation above is defined only up to an overall

constant, there are actually only two types of solutions:

c = 1 (first considered by ’t Hooft) and c = 0 (introduced

by Jackiw, Nohl and Rebbi).

As we shall see, they represent multi-anti-instanton solu-

tions with winding number −N and −(N − 1) respec-

tively.

3.6.4 Regular Solution by Gauge Transformations

The ASD solution above is singular at N points x = ai. Actually,

these singularities are gauge artifacts.
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To show this, we must be rather careful and define the gauge

field Bµ which is equal to Aµ except at the singular points.

Explicitly,

Bµ = −2iσµν

ϕ

N∑
i=1

ρ2
i (x− ai)ν

(x− ai)4 , x 6= ai

(This form is exactly what we get if we formally compute Aµ.

)

c = 0 case: Consider first the c = 0 case. Then, it has the

following asymptotic behavior as x →∞:

ϕ
x→∞−→ 1

x2

N∑
i=1

ρ2
i

Bµ
x→∞−→ −2iσµνxν

x2

This shows, surprisingly at first, that Bµ has the same asymp-

totic behavior as the BPST instanton (not anti-instanton) de-

spite the fact that we are dealing with ASD solution2. In any

case, this means that Bµ approaches a pure gauge

Bµ
x→∞−→ = g−1∂µg

g =
x0 + iτixi

r

Now define k̄ to be the winding number as defined solely by

the asymptotic behavior. Then, obviously,

k̄(Bµ) = 1

c = 1 case: The case of c = 1 is more puzzling. In this case,

ϕ
x→∞−→ 1 +O(1/x2) ⇒ Bµ

x→∞−→ O(1/x3)
2Fµν is indeed still ASD.
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and hence k̄ = 0.

What is happening is that k̄ need not coincide with the

true winding number k which is properly defined only

for a regular solution. To see this, we must study whether

we can remove the singularity by a gauge transformation. We

will do this one at a time.

First look at the behavior around x = a1. One easily

finds (for general c)

ϕ
x→a1−→ ρ2

1

(x− a1)2 +
N∑

j=2

ρ2
j

(a1 − aj)2 + c2

︸ ︷︷ ︸
c2
1

+O
(|x− a1|

a

)

where a ≡ minj 6=1|a1 − aj|
For simplicity, let us define

c2
1 ≡ c2 +

N∑
j=2

ρ2
j

(a1 − aj)2

ρ2 ≡ ρ2
1

c2
1

y ≡ x− a1

Then the behavior above takes the form

ϕ
y→0−→ c2

1

(
1 +

ρ2

y2

)
+O(|y|/a)

From this one finds

Bµ
y→0−→ −2iρ2σµνyν

y2(y2 + ρ2)
+O(y2/a2)

=
−2iσµνyν

y2 +
y2

y2 + ρ2

(−2iσµνyν

y2

)
+O(y2/a2)

This means that the singular part of Bµ at y = 0 is a pure

gauge and can be removed by the inverse of the “large” gauge
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transformation g(y) given previously. (This procedure should

be regarded as a mere technique of getting a regular solution.)

The result of this procedure is

B′
µ = gBµg

−1 + g∂µg
−1

=
y2

y2 + ρ2g∂µg
−1 +O(y2/a2)

=
2iσ̄µνyν

y2 + ρ2 +O(y2/a2) ⇐ g∂µg
−1 =

2iσ̄µνyν

y2

Thus by this procedure, we indeed get around y = 0 a regu-

lar anti-self-dual structure. Now since we have performed

a gauge transformation by g−1, the winding number k̄ is now

decreased by one unit. Thus every time we remove the sin-

gularity by a gauge transformation we have ∆k̄ = −1.

So, after removing N singularities, we get

k = k̄ = 1−N = −(N − 1) for c = 0

k = k̄ = 0−N = −N for c = 1

Exercise: Compute the winding number directly from the sin-

gular solution. (Hint: Utilize the fact that ∂2∂2 ln
∏N

i=1(x −
ai)

2 = 0 for x 6= ai. )
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