Chapter 3

Instanton Solutions in
Non-Abelian Gauge Theory
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3.1 Conventions

Gauge fields:

A, = gAT" (3.1)
T = anti-hermitian generator

[Ta’ Tb} _  pabere
F. = 0,A —0A,+[A,A] = gk, T (3.2)
Fo, = 0,A% — 0,A% + gf* Ab A (3.3)

Normalization: We normalize the generator as

1

7T = —55“ (3.4)
In the case of G = SU(2), this corresponds precisely to the
choice
TCL
T = t"= — 3.5
5 (3.5)
Covariant derivative:
D, = 0,+A4A, (3.6)
F. = [D,,D,)] (3.7)
Inner product notation: Sometimes we use the following
inner product notation
(T*, T = 6 (= —2TrT°T?) (3.8)
Euclidean action:
1 4 a 1a 1 4
SE = Z/d Q?FNVFMV:—2—92 dZUTI'(FW/F/ﬂ/)
1
= 1 d*z(F,,, F,,) >0 (3.9)
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Indices and e-tensor: To conform to some of the important

literatures, we use the convention

pv = 0,1,2,3
€123 = 1 (3.10)

Remark: If one uses the convention y =1 ~ 4 and €934 = 1,

self-dual and anti-self-dual solutions are switched.
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3.2 Decomposition SO(4) = SU(2) x SU(2)

and Quaternions

In the following, the instanton for G = SU(2) will play a funda-
mental role. This solution intertwines the gauge group and the
spacetime symmetry group SO(4), which can be decomposed
as SU(2) x SU(2). This decomposition is intimately related
to the quaternion, which will play a basic role in the ADHM

construction.

3.2.1 Decomposition of SO(4)

O SO(4) and its generators:

SO(4) rotation is expressed as

/
z, = Nuwxy

ATA =1
Writing A = exp(¢) and considering the infinitesimal transfor-
mation, we easily find that £ is real 4 x 4 antisymmetric matrix.
The standard basis for such antisymmetric matrices can be taken

as L, defined by (choosing a convenient overall sign)

(LMV)pU = _(5up51/0 _5;L051/p) (311)

In other words, L,, has —1 at the position (pu,v) and 1
at (v, p) and 0 for all the other elements. The non-vanishing

commutator for these generators is of the form

Ly, L) = Ly, no sum over v (3.12)
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(For instance, [Log, L31] = Lis.) £ can then be decomposed as

(watch for the order of indices)

§ = _%g,uuL,uu (313)

L,, is a generator of rotation in the p-v plane. For example,

Rotation in the 1-2 plane is
) B cosf —siné 1
xy ) \ sinf cosf T3
0 —0 I .

O SU(2) x SU(2) decomposition:
If we define [; and K; (i = 1,2,3) as

1
]i = §€ijk‘ij
Ki = LOi

they satisfy the commutation relations
i, I;] = €ijily
i, K] = €1 K
(K, K] = eijidy
Now define the following combinations

1
J= = §(Il-iKi) (3.15)

7

Then, we find that they generate separtely the algebra of SU(2):

[T = i

1997
J5.7) = 0



To see that they generate really the group SU(2) x SU(2),

compute the exponent —%f,WLW:

1 1
—éfuuLW = —&oiK; — §§¢j€z’jk[k

1 1
= <—§fz‘j€ijk — ‘£Ok) I+ (—§§z‘j€ijk + f()k) Ji

— ottt o7
Since 02} are real and independent, the decomposition is in-

deed SU(2) x SU(2). In this regard, recall that for the Lorentz

group, they are complex conjugate of each other.
O Intertwiner:

We will need a more explicit relation between SO(4) and SU(2) x
SU(2).
Let Map be an SU(2) transformation matrix and up be the

fundamental spinor representation:
uwy = Mpug, M M=1, A B=1,2 (3.16)

We will use dotted indices such as A, B for the second SU(2).
The above decomposition means that there must exist a 4 x 4

intertwining matrix Ty 5 u such that
TIIT! = J="t®1l
T T = J =1 =
or more explicitly
Typ (T ) = (2_; ® 1) - Tep,
AB,CD
(

TAB,M(Ji_)NV =



where E;t are 2 x 2 SU(2) generators. A solution to these set of
equations is, regarding T By 88 four 2 x 2 matrices,
To = 1, T; = —iTi (317)
5= 1, N =-1 (3.18)

where 7; are the Pauli matricies. Indeed EZ:-E satisfy the same

algebra. Hereafter, we shall write

o, =T,=(1,—ir) (3.19)

In this way, we obtain the following explicit decomposition
formula for general SO(4) transformation:
o = Az =Wy (3.20)
Te' = o,Mww, = [Te@? K T—l} [Teek T T—l} T
_ {697524“/22’ 2 eekz—/zz} T
69,j2+/2z’

o,k B iy (3.21)
Removing x,, this can be written as

o, = Myo,M" (3.22)
My = SU(2) (3.23)

Therefore, o, transforms under bifundamental (%, %) represen-
tation of SU(2) x SU(2).
3.2.2 Quaternions

o, defined above is deeply related to the quaternions, which

forms an algebra (actually a field) denoted by H.
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Quaternion ¢ € H is defined by

3 3
¢ = D duen = o+ Y ae; (3.24)
p=0 i=1

where ¢, are real numbers and e,’s satisfy the following closed

algebra:

€ep = €y, €;e; = —eq, (3.25)
€epe; = e;eg =e€;, €;e; = €;jke; (’L 75 J) (3.26)

Since e;e; = —eje;, quaternion algebra is in general non-commutative.
This multiplication rule can be summarized as (u, v on the RHS

are not summed)

€ney = —(—1)6“05“V€0 + 5u0(1 — 6,/0)6,/ + 6,/0(1 — 5u0)eu
+ Z eouupep (327)
p

When one sets es = e3 = 0, then it becomes a complex number,
with e; being the imaginary unit . Hereafter summation over
the repeated indices will be assumed, unless otherwise stated.

It is clear that H is closed under multiplication.

Remark: One can easily check that if we ignore the fact that
o, has the index structure (o) 45, namely that row and col-
umn indices are acted on by different SU(2) groups, o, satisfies

exactly the same algebra as quaternions defined above.
O Conjugation, (anti-)self-duality and norm:

Quaternionic conjugate of ¢ will be denoted by ¢' and is defined
by

qg = quL (3.28)
e;r, = eg, e;-r = —e; (3.29)

3.2-8



Consider now the products e,e], and eLey. Due to the following
group theoretical reasons, they have very simple interpretations:
If we go back to o, interpretation of quaternions, euej, Is a
quantity which transforms solely by SU(2), like M e e} M.
Thus, it is a singlet under SU(2)_ and is therefore a mixture of
(0,0) and (1,0):
11 11
532G

The former must be represented by d,, and the latter should

)=(1,1)@(1,0) ® +(0,1) @& (0,0)

be a self-dual antisymmetric tensor, which will be denoted by
200,,.

Similarly, el e, transforms under SU(2)_ like M*ele, MT and
is a mixture of (0,0) and (0, 1). The latter is the anti-self-dual
part of SO(4) tensor.

In fact, one easily verifies the following relations:

el = 6.+ 2io,, (3.30)

ehey = O +2i0, (3.31)
1

O = 4—i(euei — eyeL) (3.32)
_ 1

O = E(ezey —ele,) (3.33)

where 0, and 7, are antisymmetric, hermitian and satisfy the
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following duality properties:

1
o = §€uvm‘7pa=0'uv self-dual(SD)
1
T = §€Wpt75'p0= —&,, anti-self-dual(ASD)
where €123 = 1
(For example, *(egel) = egel = —e; = egel satisfying self-
duality. )
’t Hooft tensor: o, and 0y, are traceless as 2 x 2 matrices.

Thus, they can be expanded in terms of e,, with a = 1,2, 3.

Explicitly,
1 . o Ta
O pv = Elrlzl/(zea) — T’uu? (334)
"72,, — 6”06110, - 61106/.La + 6Oap,y (335)
_ 1_, . 4 Ta
o-[,“/ E Enuy(zea) — 77,“/? (336)
ﬁZV — _(6/1/05110, - 51/05/1,0,) + e()a,y,y (337)

Ny M ave often called 't Hooft tensors. In the construction
of instanton solution, e, will be regarded as the basis for the
gauge group SU(2). Thus,’t Hooft tensors intertwine the

spacetime and internal groups.

Properties of the 't Hooft tensors:

Napw = €qu, & p,v=123
Naoy = Oav

Napo = —Oap

Naoo = 0

o = (= 1)1,

3.2-10



Ny Mo = 40qp

NapwNapr = 300

NapwNapy = 12

NapwNarr = OpurOur — 0ur0ui + €puir

OxANapw + OkvNary + OkpMavr + NaorkErwo = 0
NapwMopr = OabOur + €abellevr

€abcTbpvNex) = 6u/$77a1/)\ - 5;1)\77aw<; - 51/577au)\ + 51/)\77a,u/<c

nauuﬁbuy = 0
nanuﬁbli)\ = nal-@)\ﬁbnu
Norm: The norm-squared of ¢ is defined as ¢'q:

q® = ¢'q=qupeles = b = quq. >0 (3.38)

where the equality holds if and only if ¢ = 0. It is clear that
¢'q¢ = qq' holds. Furthermore, this shows that non-vanishing ¢

always has the inverse ¢! (hence H forms a field) given by

i
_ q _ _
¢! = ek g ' =q'qg=1 (3.39)

O Another view of 't Hooft tensor:

The 't Hooft tensor can be introduced from a slightly different
point of view. The idea is to extend the action of SO(4) to the
internal gauge group part. One natural way is to intertwine
the gauge group SU(2), with one of the SU(2) factor
of SO(4).

For instance, extend SU(2)+ to SU(2); @ SU(2),. The total

generator for this sector becomes
Jr=J"+1t (3.40)
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where ¢; is the generator of SU(2), satisfying [t;,t;] = €ijnts.
SU(2)_ sector is unchanged, i.e. ji_ = J; . Then, going back-

wards to L, we easily find the following modified expressions

denoted by L,,:

Z/w = Ly + 1w
where lij = e€ijite

loi = 1

Since jf satisfy exactly the same commutation relations as be-
fore, L,, (and hence I, themselves) obey SO(4) algebra. Now

introduce 14, by

-
l/ﬂ/ — /’Vla,uz/ta — 77a,uu2_(; (341)

Then, one can check that 7,,, is exactly the 't Hooft tensor.

This also means the identification o, = 2l,,.

O Conversion between e, and eL:

The following relation is often useful:

ce, el e’ € =IiT (0 1)

& eanle)apens = —(€))pa
3.3 (Anti-)Self-Dual Configurations as Clas-
sical Solutions

3.3.1 Some formulas

We define the dual field strength as

~ 1
F;w = EEMVaﬁFaﬁ (342)
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Then we find

2 2
ij — Fw/ (3.43)
Proof:
. 1 1 1 2
F;w - §€uua5§€uupaFaﬂFpa - 1_12(504’6@7 - 5005ﬁp)FaﬂFPU - FMV

Using this formula, we get (with F' = F}, etc.)
%(Fj:F)Q = %(F2+F2i2Fﬁ) —F?+FF>0
(3.44)
Since F? > 0, this implies
F? > |FF| (3.45)

where the equality holds when F' +F =0, i.e. for ng —+F ;71/'
These are called self-dual (SD) and anti-self-dual (ASD)
configurations. Hereafter, we use (A)SD to denote both of these

configurations.

3.3.2 Minimum action configurations

Integrate the relation (3.44) above over the space-time. We get
1

Sp = i d'z F{,Fy, > |Q (3.46)
1 a fra
where  Q = 17 d4xFWFW (3.47)

and the minimum value of the action is attained for (A)SD con-

figurations.
O Equation of motion and Bianchi identity:

(A)SD configurations are necessarily solutions of the classical

YM equation
Dy F] = 0 (3.48)
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This is because the Bianchi identity

1
0 = {DM,FNV} = S€was (D [De, D] (3.49)

is equivalent to the equation of motion for (A)SD configurations.

O Vanishing of the energy-momentum tensor:

The energy-momentum tensor is given by (omitting the group

theory superscript a)

1
T, = FnF\ — Zéﬂy(Fa/gFga) (3.50)

Exercise: Prove that T),, = 0 for (A)SD configurations.
Now we use the following identity:
-~ 1
FpFy, = §5WFaﬁFﬁa — Fiotoy (3.51)

This can be proved by direct calculation:

1

FMAFAV = Zeuz\awz Exvpi o Foras F
5#” 5uﬂ1 6#52
= - 5oz1V 5041/31 5a1ﬁ2 FamaFﬁlﬁz
5a2V 5a2ﬁ1 5a2ﬁ2
1
= §5quaﬁF5a — FuoFo (3.52)
Therefore, we get
1 1 ~ o~
Za/w(FaﬂFﬂa) = §(FMQFM—{—FﬂaFa,/) (3.53)
Putting this into 7T}, we find
1 _
T = 5(FuaFa = FuaFa) (3.54)

which obviously vanishes for (A)SD configurations.
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3.4 Winding Number for Finite Action Con-
figurations

3.4.1 Topological nature of the charge @)

It is easy to see that () is topological in the sense that it is

invariant under any continuous deformation of A,. Infact

6TrFMVFMV = 2TI‘((S [DM7 DV] FMV)
= 4Tr([0, + A,, 0A,] F,)
= 0,Tr(40A,F,,) + ATr(5A, [DM, FW} )(3.55)

Due to the Bianchi identity, the second term vanishes and the
result is a total derivative. Upon integration this vanishes if at
least F),, tends to zero at infinity. Note that this is true for any

configuration.

Remark: We have already discussed this in the lecture on

anomaly. There we derived the formula
STr(F™) = d((n+ 1)Tr(SAF™)) (3.56)
For n = 1, this is nothing but the above equation:
F? = FAF = %Fﬂyﬁwd‘lx
SAF = 6AANF = %AMFaﬁdxﬂdxadxﬂ
d(6AF) = 0,(0A,F,,)d"z

In fact, we showed that TrF? = dw{, where

1 2
wg = Tr (AF — §A3> =Tr (AdA + §A3> = Chern-Simons form

3.4-15



More explicitly,
dw§ = 0,K,d'z

1 1
KM = EuyaﬁTI‘ (§AyFaﬁ - gAyAaAﬁ)

3.4.2 Non-trivial gauge transformations and their wind-
ing number

For the action to be finite, F},, must fall off faster than 1/r? as
r = V22 — oo. This means that the gauge potential must
fall off faster than 1/r up to a gauge transformation,

1.€.

tra

_1 1
A, ~ g O,9+o(—-

O Case of G = SU(2):

The most general SU(2) gauge transformation can be written

as
g = a—+ibT;
where a,b; (i = 1,2,3) are real numbers satisfying
A+bib =1 <« glg=1
This shows that SU(2) is topologically a 3-sphere S°.

Note that g is nothing but a quaternion g with the unit

norm q'q = 1. This is the well-known equivalence
SU(2) ~ Sp(1)

When a and b; become functions of z,, g(x) for large fixed r
gives a mapping S3(space time) — S3(SU(2)). The impor-

tant fact is that such gauge transformations are classified by the
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homotopy group, i.e. the additive group of equivalence class
whose members are continuously deformable to each other.
The simplest non-trivial gauge transformation which

is not homotipic to a constant can be represented by

1
g = —(xg+i&-7) = -0z,
r r

It is clear that, for a fixed r, as one covers S® in space one covers

SU(2) group space exactly once.

Let us compute the pure gauge potential corresponding

to this g:
g ' = %ayrry
g = %O'L igaixl,
A, = g—laugzla)\x)\ (%JL %Oixy> =
=200\ 2,7
r2 2

where we used UMO'i = Oy + 210

Since, as we have seen, the topological charge is a homotopy
invariant, it must characterize the homotopy class of the gauge
transformation g. Since except at the origin F' vanishes for a

pure gauge potential, we have

2 _ 4 _ 3 Lu
/TrF = /da:@qu—/SSd:U7Kg

K,

1

= — geuyaﬂTr(AuAaAﬁ)
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(AF part of K, is zero for pure gauge configuration.)
To evaluate this, note that
(i) K¢ is a vector and hence x, K is rotationally invariant and
(ii) we may set r = 1 since we are computing a homotopy in-
variant.
Thus, all we have to do is to compute the value of the integrand
at one point on a unit S and multiply by the volume of 53,
which is 272. Take the point to be g = 1, z; = 0. Then,

A = —2i0 =17,

7 2

X
g _— 9 — . . — e — —

Thus, if we define the Pontryagin index (or winding num-
ber) k by

! 4 - ! 2
= /d zF'F' = ——— [ TrF
3272 N 82
we get
1 2
for the above homotopy class.
Additivity of the winding number: For more general

gauge transformation, the following observation suffices: Let the

winding number of g;,7 = 1,2 be k; and consider the product

g = g192.
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g2 =1

g1=1

Since the winding number is unchanged by continuous deforma-
tion, we may deform g¢1(gs) such that g; = 1(go = 1)on the lower
(upper) hemisphere of S?. In this case the winding number ki
for g; is obtained by integration over the upper hemisphere only
and so on. It is then clear that the winding number of ¢,g- is
k1 + k.

3.5 One Instanton Solution for SU(2)

With these preparations, we now describe how to obtain the
simplest (anti-)instanton solution with k& = +1.

Since the (A)SD equations are still rather difficult to solve in
complete generality, one would like to make an ansatz to find
solutions.

The most natural strategy is to first look for a self-dual so-
lution with SO(4) symmetry. An obvious ansatz (adopted by
BPST) to try is

A, = gALty =0l tex, f(2?) = L, f(2?)
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which satisfies the gauge condition 2,4, = 0. Using the SO(4)

commutation relations, we can easily compute F),, to be

F;w — &L(CCQJ&_Q][)"F(%MZW\Q:)\_(MHV))(QJU'FJ&)

\ . 4

SD ASD

where f’ means derivative with respect to z2. For this to be
self-dual, we must set 2’ + f2 = 0. The general solution of this
equation is

2

o (3.57)

fa®) =

with p a constant. Thus we get a regular self-dual solution

21 v Ly a 2 ’r’aymu
A, = S pe = S (3.58)
22+ p gx2+p
4l,,.p° 4 NP
F, = -l = pe_ T Twl g5

@+ T g(a?+ p?)?

e p can be interpreted as the size of the instanton.

e I'rom translation invariance, we may replace x, by x, —a,

with a, describing the position of the instanton.

e Thus, this solution has 5 gauge-invariant free parame-

ters, called the moduli of an instanton solution.

e With 7, replacing 77, one gets the anti-instanton solution.
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Note that as » — oo, A, precisely reduces to the pure
gauge g 10,9 carrying winding number 1, with g dis-

cussed previously.

3.6 A Class of Multi-Instanton Solutions

3.6.1 Extended Ansatz

A more general ansatz which yields a class of multi-instanton

solutions is of the form!
A, = luaaaf(w) (3.60)

which satisfies the gauge condition 9,4, = 0. One can easily

compute F),, to be

Fuo = lw(af)Q — LupSpv + lupSpp
where Sw = 0,0,f +0,f0,f = symmetric

Now decompose V,5 into the traceless part and the trace part:

1
SIU/ - TMV+15HVS
S = Suu, T, =0

Then, we get

1
Fuo = §l,,,,,(((9f)2 - an) + A

Aw = =T + LT
The first term is clearly self-dual. Although it is not at all

obvious, A,, part is actually anti-self-dual. This can be

checked by studying A,y and flij separately. The reason for it is

'F. Wilczeck, in “Quark confinement and Field Theory”, ed. D. Stump and D. Wein-
garten (New York, 1977); E. Corrigan and D.B. Fairlie, PLB67 (77) 69.
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roughly as follows: In terms of SU(2) x SU(2) representations,
lw € (1,0) and T, (traceless, symmetric) € (1,1). Thus (1,0) x
(1,1) = (0,1) ® (2,1). The above combination picks up the
anti-self-dual part (0, 1).

3.6.2 Self-dual solution

Self-dual solution is obtained if we set A,, =0, ¢.e. T, = 0O:

1 1
Spv — Zéuys = 0,0y f + OufOuf — Z(SMV (an - (af)2) =0

It is convenient to set f = — In . Then, the equation above

can be rewritten as

0, 1 0,0
0 () =10 ()

This means that 9,¢/¢?* can only be a linear function of z, of

the form cx, + d,. Thus, we have

Oyp _
2 = O(—p 1) = cxy +d,
For ¢ # 0, the solution is of the form
B 1
v te(x—a)>+b

This gives a finite action only if the sign of ¢ and b are the same,
so that ¢ never blows up. In such a case, it coincides with
the BPST solution, which is not new. For ¢ = 0, F},, becomes

singular.

3.6.3 Anti-self-dual solution

Another possiblity is to set the self-dual part to zero. This

will turn out to give more interesting solutions. The equation
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is (0f)* = 0*f and just as before, set f = —Iny. Then this
simplifies to
82
Po _
¥
The most general solution with positive definite sign with iso-

lated singularities is

_ ki 2
Y= Z(m—a,i)2+c

=1

e Due to the division by ¢, the d-function is annihilated and

this is a legitimate solution of the above equation.

e Since the equation above is defined only up to an overall
constant, there are actually only two types of solutions:
c = 1 (first considered by 't Hooft) and ¢ = 0 (introduced
by Jackiw, Nohl and Rebbi).

As we shall see, they represent multi-anti-instanton solu-
tions with winding number — N and —(IN — 1) respec-
tively.

3.6.4 Regular Solution by Gauge Transformations

The ASD solution above is singular at N points x = a;. Actually,

these singularities are gauge artifacts.
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To show this, we must be rather careful and define the gauge
field B, which is equal to A, except at the singular points.
Explicitly,

B 200, iv: p2(x — a;), y
= — s X a;
8 o = (v—a)

(This form is exactly what we get if we formally compute A,,.
)

c = 0 case:  Consider first the ¢ = 0 case. Then, it has the

following asymptotic behavior as x — oc:

1 N
¥ — ﬁng
i=1

T—00 Qiauuxu

72
This shows, surprisingly at first, that B, has the same asymp-
totic behavior as the BPST instanton (not anti-instanton) de-

2

spite the fact that we are dealing with ASD solution”. In any

case, this means that B, approaches a pure gauge

B,u x;o)o = g_la’ug
To + 1Tx;
g _=
r

Now define k to be the winding number as defined solely by

the asymptotic behavior. Then, obviously,

c = 1 case: The case of ¢ =1 is more puzzling. In this case,

p = 1+0(1/2*) = B,~> O(1/2")
2wa is indeed still ASD.
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and hence k = 0.

What is happening is that k need not coincide with the
true winding number k which is properly defined only
for a regular solution. To see this, we must study whether
we can remove the singularity by a gauge transformation. We
will do this one at a time.

First look at the behavior around * = a;. One easily

finds (for general c)

N 2
T—ay O |93 - a1|
14 33—&1 +Z CL1 —CL] + —l_ ( a

-

5
€1

where a = minjyglar —ay

For simplicity, let us define

N
cf = c2—|—§
]=2
2
2 _ P
P = 3
91
Yy = Tr—a;

Then the behavior above takes the form

y—=0 9 p’
o — all+ 5| +0lyl/a)

From this one finds

—0 _QiPZU vYv 27/ 2
B Y P 10 a
8 v (y* + p?) W)
—QiJM,/yy y2 <_2i0uuyv> 2/ 2
- + +O(y~/a”)
12 y? + p? y?

This means that the singular part of B, at y = 0 is a pure

gauge and can be removed by the inverse of the “large” gauge
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transformation ¢(y) given previously. (This procedure should
be regarded as a mere technique of getting a regular solution.)

The result of this procedure is

B, = gB.g~"+ 90,97
2

-1 2/ 2
= 90,5 +O0(y /a
0,07 + O/ a)
20 vy _ 210 vy
= yz—/{in +O0(P/a*) < gy = y’;

Thus by this procedure, we indeed get around y = 0 a regu-
lar anti-self-dual structure. Now since we have performed
a gauge transformation by ¢~', the winding number k is now
decreased by one unit. Thus every time we remove the sin-
gularity by a gauge transformation we have Ak = —1.

So, after removing N singularities, we get

k‘:
E =k

(N—-1) forc=0
N forc=1

1-N
— N

=
I

Exercise: Compute the winding number directly from the sin-
gular solution. (Hint: Utilize the fact that §292In[]",(z —
a;)> =0 for = # a;. )
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